SAPTSTA-AnoECG: a PatchTST-based ECG anomaly detection method with subtractive attention and data augmentation

An electrocardiogram (ECG) is a crucial noninvasive medical diagnostic method that enables real-time monitoring of the electrical activity of the heart. ECGs hold a significant position in the rapid diagnosis and routine monitoring of cardiac diseases due to their user-friendly operation, prompt det...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2025-02, Vol.55 (3), p.184, Article 184
Hauptverfasser: Li, Yifan, Wang, Mengjue, Guan, Mingxiang, Lu, Chen, Li, Zhiyong, Chen, Tieming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 184
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 55
creator Li, Yifan
Wang, Mengjue
Guan, Mingxiang
Lu, Chen
Li, Zhiyong
Chen, Tieming
description An electrocardiogram (ECG) is a crucial noninvasive medical diagnostic method that enables real-time monitoring of the electrical activity of the heart. ECGs hold a significant position in the rapid diagnosis and routine monitoring of cardiac diseases due to their user-friendly operation, prompt detection, broad range of diagnosable problems, and cost-effectiveness. However, thorough comprehension of ECG readings requires a high level of medical expertise due to the complex variations in ECG patterns, substantial interindividual differences, and numerous interfering factors. Consequently, current ECG machines and ECG Holters typically provide simplistic indications of ECG anomalies. Nonetheless, current ECG anomaly detection (EAD) algorithms lack precision; therefore, these medical devices cannot accurately report the specific types of diseases reflected in ECG results. In response to these challenges, this paper proposes enhancing the accuracy of electrocardiogram detection by improving algorithms. Therefore, we propose SAPTSTA-AnoECG, a PatchTST-based ECG anomaly detection method with subtractive attention and data augmentation. This method introduces a subtractive attention mechanism to make the Transformer architecture more suitable for time series data. We also use data augmentation to increase the robustness of the model. In addition, a patch-based approach is employed to reduce the algorithm’s computational complexity of the model. Furthermore, we introduce a new publicly available ECG dataset named HCE in this paper and conduct comparative experiments using this dataset along with the PTB-XL and CPSC 2018 datasets. The experimental results demonstrate the effectiveness of this method.
doi_str_mv 10.1007/s10489-024-05881-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3150205719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147266860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1355-6f6062edb85c44562da78909690339bf831375e9467a29aaa292ebecc76a2afc3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4CngOTpJNsnGWylahYKFVvAWZneztqW7Wzep0rc3bT17mYFvPmaGn5BbDvccwDwEDlluGYiMgcpzztQZGXBlJDOZNedkADaNtLYfl-QqhDUASAl8QNr5aLaYL0Zs1HZP48kjRTrDWC4TYwUGX9FEKbZdg5s9rXz0ZVx1LW18XHYV_VnFJQ27IvaY-LenGKNvjwa2Fa0wIsXdZ5MYHug1uahxE_zNXx-S9-enxfiFTd8mr-PRlJVcKsV0rUELXxW5KrNMaVGhyS1YbdPbtqhzyaVR3mbaoLCIqQhf-LI0GgXWpRySu9Pebd997XyIbt3t-jaddJIrEKAMt_9bmRFa5xqSJU5W2Xch9L52237VYL93HNwhfXdK36X03TF9p-QvzZl2Nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147266860</pqid></control><display><type>article</type><title>SAPTSTA-AnoECG: a PatchTST-based ECG anomaly detection method with subtractive attention and data augmentation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Yifan ; Wang, Mengjue ; Guan, Mingxiang ; Lu, Chen ; Li, Zhiyong ; Chen, Tieming</creator><creatorcontrib>Li, Yifan ; Wang, Mengjue ; Guan, Mingxiang ; Lu, Chen ; Li, Zhiyong ; Chen, Tieming</creatorcontrib><description>An electrocardiogram (ECG) is a crucial noninvasive medical diagnostic method that enables real-time monitoring of the electrical activity of the heart. ECGs hold a significant position in the rapid diagnosis and routine monitoring of cardiac diseases due to their user-friendly operation, prompt detection, broad range of diagnosable problems, and cost-effectiveness. However, thorough comprehension of ECG readings requires a high level of medical expertise due to the complex variations in ECG patterns, substantial interindividual differences, and numerous interfering factors. Consequently, current ECG machines and ECG Holters typically provide simplistic indications of ECG anomalies. Nonetheless, current ECG anomaly detection (EAD) algorithms lack precision; therefore, these medical devices cannot accurately report the specific types of diseases reflected in ECG results. In response to these challenges, this paper proposes enhancing the accuracy of electrocardiogram detection by improving algorithms. Therefore, we propose SAPTSTA-AnoECG, a PatchTST-based ECG anomaly detection method with subtractive attention and data augmentation. This method introduces a subtractive attention mechanism to make the Transformer architecture more suitable for time series data. We also use data augmentation to increase the robustness of the model. In addition, a patch-based approach is employed to reduce the algorithm’s computational complexity of the model. Furthermore, we introduce a new publicly available ECG dataset named HCE in this paper and conduct comparative experiments using this dataset along with the PTB-XL and CPSC 2018 datasets. The experimental results demonstrate the effectiveness of this method.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-024-05881-5</identifier><language>eng</language><publisher>Boston: Springer Nature B.V</publisher><subject>Algorithms ; Anomalies ; Complexity ; Cost effectiveness ; Data augmentation ; Datasets ; Electrocardiography ; Medical devices ; Monitoring ; Real time ; Telemedicine</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2025-02, Vol.55 (3), p.184, Article 184</ispartof><rights>Copyright Springer Nature B.V. Jan 2025</rights><rights>Copyright Springer Nature B.V. Feb 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1355-6f6062edb85c44562da78909690339bf831375e9467a29aaa292ebecc76a2afc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Li, Yifan</creatorcontrib><creatorcontrib>Wang, Mengjue</creatorcontrib><creatorcontrib>Guan, Mingxiang</creatorcontrib><creatorcontrib>Lu, Chen</creatorcontrib><creatorcontrib>Li, Zhiyong</creatorcontrib><creatorcontrib>Chen, Tieming</creatorcontrib><title>SAPTSTA-AnoECG: a PatchTST-based ECG anomaly detection method with subtractive attention and data augmentation</title><title>Applied intelligence (Dordrecht, Netherlands)</title><description>An electrocardiogram (ECG) is a crucial noninvasive medical diagnostic method that enables real-time monitoring of the electrical activity of the heart. ECGs hold a significant position in the rapid diagnosis and routine monitoring of cardiac diseases due to their user-friendly operation, prompt detection, broad range of diagnosable problems, and cost-effectiveness. However, thorough comprehension of ECG readings requires a high level of medical expertise due to the complex variations in ECG patterns, substantial interindividual differences, and numerous interfering factors. Consequently, current ECG machines and ECG Holters typically provide simplistic indications of ECG anomalies. Nonetheless, current ECG anomaly detection (EAD) algorithms lack precision; therefore, these medical devices cannot accurately report the specific types of diseases reflected in ECG results. In response to these challenges, this paper proposes enhancing the accuracy of electrocardiogram detection by improving algorithms. Therefore, we propose SAPTSTA-AnoECG, a PatchTST-based ECG anomaly detection method with subtractive attention and data augmentation. This method introduces a subtractive attention mechanism to make the Transformer architecture more suitable for time series data. We also use data augmentation to increase the robustness of the model. In addition, a patch-based approach is employed to reduce the algorithm’s computational complexity of the model. Furthermore, we introduce a new publicly available ECG dataset named HCE in this paper and conduct comparative experiments using this dataset along with the PTB-XL and CPSC 2018 datasets. The experimental results demonstrate the effectiveness of this method.</description><subject>Algorithms</subject><subject>Anomalies</subject><subject>Complexity</subject><subject>Cost effectiveness</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Electrocardiography</subject><subject>Medical devices</subject><subject>Monitoring</subject><subject>Real time</subject><subject>Telemedicine</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4CngOTpJNsnGWylahYKFVvAWZneztqW7Wzep0rc3bT17mYFvPmaGn5BbDvccwDwEDlluGYiMgcpzztQZGXBlJDOZNedkADaNtLYfl-QqhDUASAl8QNr5aLaYL0Zs1HZP48kjRTrDWC4TYwUGX9FEKbZdg5s9rXz0ZVx1LW18XHYV_VnFJQ27IvaY-LenGKNvjwa2Fa0wIsXdZ5MYHug1uahxE_zNXx-S9-enxfiFTd8mr-PRlJVcKsV0rUELXxW5KrNMaVGhyS1YbdPbtqhzyaVR3mbaoLCIqQhf-LI0GgXWpRySu9Pebd997XyIbt3t-jaddJIrEKAMt_9bmRFa5xqSJU5W2Xch9L52237VYL93HNwhfXdK36X03TF9p-QvzZl2Nw</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Li, Yifan</creator><creator>Wang, Mengjue</creator><creator>Guan, Mingxiang</creator><creator>Lu, Chen</creator><creator>Li, Zhiyong</creator><creator>Chen, Tieming</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20250201</creationdate><title>SAPTSTA-AnoECG: a PatchTST-based ECG anomaly detection method with subtractive attention and data augmentation</title><author>Li, Yifan ; Wang, Mengjue ; Guan, Mingxiang ; Lu, Chen ; Li, Zhiyong ; Chen, Tieming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1355-6f6062edb85c44562da78909690339bf831375e9467a29aaa292ebecc76a2afc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Anomalies</topic><topic>Complexity</topic><topic>Cost effectiveness</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Electrocardiography</topic><topic>Medical devices</topic><topic>Monitoring</topic><topic>Real time</topic><topic>Telemedicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yifan</creatorcontrib><creatorcontrib>Wang, Mengjue</creatorcontrib><creatorcontrib>Guan, Mingxiang</creatorcontrib><creatorcontrib>Lu, Chen</creatorcontrib><creatorcontrib>Li, Zhiyong</creatorcontrib><creatorcontrib>Chen, Tieming</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yifan</au><au>Wang, Mengjue</au><au>Guan, Mingxiang</au><au>Lu, Chen</au><au>Li, Zhiyong</au><au>Chen, Tieming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SAPTSTA-AnoECG: a PatchTST-based ECG anomaly detection method with subtractive attention and data augmentation</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><date>2025-02-01</date><risdate>2025</risdate><volume>55</volume><issue>3</issue><spage>184</spage><pages>184-</pages><artnum>184</artnum><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>An electrocardiogram (ECG) is a crucial noninvasive medical diagnostic method that enables real-time monitoring of the electrical activity of the heart. ECGs hold a significant position in the rapid diagnosis and routine monitoring of cardiac diseases due to their user-friendly operation, prompt detection, broad range of diagnosable problems, and cost-effectiveness. However, thorough comprehension of ECG readings requires a high level of medical expertise due to the complex variations in ECG patterns, substantial interindividual differences, and numerous interfering factors. Consequently, current ECG machines and ECG Holters typically provide simplistic indications of ECG anomalies. Nonetheless, current ECG anomaly detection (EAD) algorithms lack precision; therefore, these medical devices cannot accurately report the specific types of diseases reflected in ECG results. In response to these challenges, this paper proposes enhancing the accuracy of electrocardiogram detection by improving algorithms. Therefore, we propose SAPTSTA-AnoECG, a PatchTST-based ECG anomaly detection method with subtractive attention and data augmentation. This method introduces a subtractive attention mechanism to make the Transformer architecture more suitable for time series data. We also use data augmentation to increase the robustness of the model. In addition, a patch-based approach is employed to reduce the algorithm’s computational complexity of the model. Furthermore, we introduce a new publicly available ECG dataset named HCE in this paper and conduct comparative experiments using this dataset along with the PTB-XL and CPSC 2018 datasets. The experimental results demonstrate the effectiveness of this method.</abstract><cop>Boston</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10489-024-05881-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2025-02, Vol.55 (3), p.184, Article 184
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_journals_3150205719
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Anomalies
Complexity
Cost effectiveness
Data augmentation
Datasets
Electrocardiography
Medical devices
Monitoring
Real time
Telemedicine
title SAPTSTA-AnoECG: a PatchTST-based ECG anomaly detection method with subtractive attention and data augmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A44%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SAPTSTA-AnoECG:%20a%20PatchTST-based%20ECG%20anomaly%20detection%20method%20with%20subtractive%20attention%20and%20data%20augmentation&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Li,%20Yifan&rft.date=2025-02-01&rft.volume=55&rft.issue=3&rft.spage=184&rft.pages=184-&rft.artnum=184&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-024-05881-5&rft_dat=%3Cproquest_cross%3E3147266860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147266860&rft_id=info:pmid/&rfr_iscdi=true