参考作物腾发量预报在线训练深度学习模型

【目的】探究参考作物腾发量(ET0)的实时预报方法。【方法】以浙江省杭州市萧山区2021年4月24日—2023年12月31日的天气预报数据和整点天气实况资料为数据集,分析模型输入数据的预报精度,采用BP神经网络算法构建ET0预报的深度学习模型,并部署至阿里云服务器进行在线训练。【结果】模型的输入数据中,气温预报准确率较高,且最低气温预报精度高于最高气温,天气类型及风力等级预报存在一定误差。模型预报值与实时数据计算得到的标准值相比,预见期内二者变化趋势大致相同,预报精度较高,训练期与测试期准确率最高分别可达到91.56%和84.75%,训练期均方根误差(RMSE)与平均绝对误差(MAE)平均值分...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Guanʻgai paishui xuebao 2024-01, Vol.43 (12), p.57
Hauptverfasser: DENG Xuanying, LYU Xinwei, ZHENG Wenyan, ZHENG Shizong, ZHANG, Yadong, LUO Tongyuan, CUI Yuanlai, LUO Yufeng
Format: Artikel
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 57
container_title Guanʻgai paishui xuebao
container_volume 43
creator DENG Xuanying
LYU Xinwei
ZHENG Wenyan
ZHENG Shizong
ZHANG, Yadong
LUO Tongyuan
CUI Yuanlai
LUO Yufeng
description 【目的】探究参考作物腾发量(ET0)的实时预报方法。【方法】以浙江省杭州市萧山区2021年4月24日—2023年12月31日的天气预报数据和整点天气实况资料为数据集,分析模型输入数据的预报精度,采用BP神经网络算法构建ET0预报的深度学习模型,并部署至阿里云服务器进行在线训练。【结果】模型的输入数据中,气温预报准确率较高,且最低气温预报精度高于最高气温,天气类型及风力等级预报存在一定误差。模型预报值与实时数据计算得到的标准值相比,预见期内二者变化趋势大致相同,预报精度较高,训练期与测试期准确率最高分别可达到91.56%和84.75%,训练期均方根误差(RMSE)与平均绝对误差(MAE)平均值分别为0.828 mm/d和0.667 mm/d,测试期RMSE与MAE平均值分别为1.049 mm/d和0.829 mm/d。【结论】采用公共天气预报数据构建BP模型在线训练,能够实现ET0的实时预报,精度较高且便于运用,可为农业工作者实时灌溉决策提供数据支撑。
doi_str_mv 10.13522/j.cnki.ggps.2024176
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3149880694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149880694</sourcerecordid><originalsourceid>FETCH-proquest_journals_31498806943</originalsourceid><addsrcrecordid>eNpjYJAxNNAzNDY1MtLP0kvOy87US08vKNYzMjAyMTQ3Y2HgNDQzN9I1NjY052DgLS7OTDIwMDQ0AGow42SwfNrf9KKh-cneOc87V75o3fe0f-LL9v6Xi1qedS19OmfF8137X6xb-3x387PtG5_uWvZ07bInOxc8W7Hw6bxuHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzY0sbSwMDCzNDEmThUAc8NRmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149880694</pqid></control><display><type>article</type><title>参考作物腾发量预报在线训练深度学习模型</title><source>DOAJ Directory of Open Access Journals</source><creator>DENG Xuanying ; LYU Xinwei ; ZHENG Wenyan ; ZHENG Shizong ; ZHANG, Yadong ; LUO Tongyuan ; CUI Yuanlai ; LUO Yufeng</creator><creatorcontrib>DENG Xuanying ; LYU Xinwei ; ZHENG Wenyan ; ZHENG Shizong ; ZHANG, Yadong ; LUO Tongyuan ; CUI Yuanlai ; LUO Yufeng</creatorcontrib><description>【目的】探究参考作物腾发量(ET0)的实时预报方法。【方法】以浙江省杭州市萧山区2021年4月24日—2023年12月31日的天气预报数据和整点天气实况资料为数据集,分析模型输入数据的预报精度,采用BP神经网络算法构建ET0预报的深度学习模型,并部署至阿里云服务器进行在线训练。【结果】模型的输入数据中,气温预报准确率较高,且最低气温预报精度高于最高气温,天气类型及风力等级预报存在一定误差。模型预报值与实时数据计算得到的标准值相比,预见期内二者变化趋势大致相同,预报精度较高,训练期与测试期准确率最高分别可达到91.56%和84.75%,训练期均方根误差(RMSE)与平均绝对误差(MAE)平均值分别为0.828 mm/d和0.667 mm/d,测试期RMSE与MAE平均值分别为1.049 mm/d和0.829 mm/d。【结论】采用公共天气预报数据构建BP模型在线训练,能够实现ET0的实时预报,精度较高且便于运用,可为农业工作者实时灌溉决策提供数据支撑。</description><identifier>ISSN: 1672-3317</identifier><identifier>DOI: 10.13522/j.cnki.ggps.2024176</identifier><language>chi ; eng</language><publisher>Xinxiang City: Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage</publisher><subject>Accuracy ; Algorithms ; Back propagation networks ; Deep learning ; Evapotranspiration ; Irrigation ; Irrigation water ; Lead time ; Machine learning ; Meteorological data ; Neural networks ; Online instruction ; Parameters ; Real time ; Root-mean-square errors ; Training ; Water management ; Weather ; Weather forecasting</subject><ispartof>Guanʻgai paishui xuebao, 2024-01, Vol.43 (12), p.57</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>DENG Xuanying</creatorcontrib><creatorcontrib>LYU Xinwei</creatorcontrib><creatorcontrib>ZHENG Wenyan</creatorcontrib><creatorcontrib>ZHENG Shizong</creatorcontrib><creatorcontrib>ZHANG, Yadong</creatorcontrib><creatorcontrib>LUO Tongyuan</creatorcontrib><creatorcontrib>CUI Yuanlai</creatorcontrib><creatorcontrib>LUO Yufeng</creatorcontrib><title>参考作物腾发量预报在线训练深度学习模型</title><title>Guanʻgai paishui xuebao</title><description>【目的】探究参考作物腾发量(ET0)的实时预报方法。【方法】以浙江省杭州市萧山区2021年4月24日—2023年12月31日的天气预报数据和整点天气实况资料为数据集,分析模型输入数据的预报精度,采用BP神经网络算法构建ET0预报的深度学习模型,并部署至阿里云服务器进行在线训练。【结果】模型的输入数据中,气温预报准确率较高,且最低气温预报精度高于最高气温,天气类型及风力等级预报存在一定误差。模型预报值与实时数据计算得到的标准值相比,预见期内二者变化趋势大致相同,预报精度较高,训练期与测试期准确率最高分别可达到91.56%和84.75%,训练期均方根误差(RMSE)与平均绝对误差(MAE)平均值分别为0.828 mm/d和0.667 mm/d,测试期RMSE与MAE平均值分别为1.049 mm/d和0.829 mm/d。【结论】采用公共天气预报数据构建BP模型在线训练,能够实现ET0的实时预报,精度较高且便于运用,可为农业工作者实时灌溉决策提供数据支撑。</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Back propagation networks</subject><subject>Deep learning</subject><subject>Evapotranspiration</subject><subject>Irrigation</subject><subject>Irrigation water</subject><subject>Lead time</subject><subject>Machine learning</subject><subject>Meteorological data</subject><subject>Neural networks</subject><subject>Online instruction</subject><subject>Parameters</subject><subject>Real time</subject><subject>Root-mean-square errors</subject><subject>Training</subject><subject>Water management</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>1672-3317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYJAxNNAzNDY1MtLP0kvOy87US08vKNYzMjAyMTQ3Y2HgNDQzN9I1NjY052DgLS7OTDIwMDQ0AGow42SwfNrf9KKh-cneOc87V75o3fe0f-LL9v6Xi1qedS19OmfF8137X6xb-3x387PtG5_uWvZ07bInOxc8W7Hw6bxuHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzY0sbSwMDCzNDEmThUAc8NRmA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>DENG Xuanying</creator><creator>LYU Xinwei</creator><creator>ZHENG Wenyan</creator><creator>ZHENG Shizong</creator><creator>ZHANG, Yadong</creator><creator>LUO Tongyuan</creator><creator>CUI Yuanlai</creator><creator>LUO Yufeng</creator><general>Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage</general><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240101</creationdate><title>参考作物腾发量预报在线训练深度学习模型</title><author>DENG Xuanying ; LYU Xinwei ; ZHENG Wenyan ; ZHENG Shizong ; ZHANG, Yadong ; LUO Tongyuan ; CUI Yuanlai ; LUO Yufeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31498806943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Back propagation networks</topic><topic>Deep learning</topic><topic>Evapotranspiration</topic><topic>Irrigation</topic><topic>Irrigation water</topic><topic>Lead time</topic><topic>Machine learning</topic><topic>Meteorological data</topic><topic>Neural networks</topic><topic>Online instruction</topic><topic>Parameters</topic><topic>Real time</topic><topic>Root-mean-square errors</topic><topic>Training</topic><topic>Water management</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>DENG Xuanying</creatorcontrib><creatorcontrib>LYU Xinwei</creatorcontrib><creatorcontrib>ZHENG Wenyan</creatorcontrib><creatorcontrib>ZHENG Shizong</creatorcontrib><creatorcontrib>ZHANG, Yadong</creatorcontrib><creatorcontrib>LUO Tongyuan</creatorcontrib><creatorcontrib>CUI Yuanlai</creatorcontrib><creatorcontrib>LUO Yufeng</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Guanʻgai paishui xuebao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DENG Xuanying</au><au>LYU Xinwei</au><au>ZHENG Wenyan</au><au>ZHENG Shizong</au><au>ZHANG, Yadong</au><au>LUO Tongyuan</au><au>CUI Yuanlai</au><au>LUO Yufeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>参考作物腾发量预报在线训练深度学习模型</atitle><jtitle>Guanʻgai paishui xuebao</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>43</volume><issue>12</issue><spage>57</spage><pages>57-</pages><issn>1672-3317</issn><abstract>【目的】探究参考作物腾发量(ET0)的实时预报方法。【方法】以浙江省杭州市萧山区2021年4月24日—2023年12月31日的天气预报数据和整点天气实况资料为数据集,分析模型输入数据的预报精度,采用BP神经网络算法构建ET0预报的深度学习模型,并部署至阿里云服务器进行在线训练。【结果】模型的输入数据中,气温预报准确率较高,且最低气温预报精度高于最高气温,天气类型及风力等级预报存在一定误差。模型预报值与实时数据计算得到的标准值相比,预见期内二者变化趋势大致相同,预报精度较高,训练期与测试期准确率最高分别可达到91.56%和84.75%,训练期均方根误差(RMSE)与平均绝对误差(MAE)平均值分别为0.828 mm/d和0.667 mm/d,测试期RMSE与MAE平均值分别为1.049 mm/d和0.829 mm/d。【结论】采用公共天气预报数据构建BP模型在线训练,能够实现ET0的实时预报,精度较高且便于运用,可为农业工作者实时灌溉决策提供数据支撑。</abstract><cop>Xinxiang City</cop><pub>Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage</pub><doi>10.13522/j.cnki.ggps.2024176</doi></addata></record>
fulltext fulltext
identifier ISSN: 1672-3317
ispartof Guanʻgai paishui xuebao, 2024-01, Vol.43 (12), p.57
issn 1672-3317
language chi ; eng
recordid cdi_proquest_journals_3149880694
source DOAJ Directory of Open Access Journals
subjects Accuracy
Algorithms
Back propagation networks
Deep learning
Evapotranspiration
Irrigation
Irrigation water
Lead time
Machine learning
Meteorological data
Neural networks
Online instruction
Parameters
Real time
Root-mean-square errors
Training
Water management
Weather
Weather forecasting
title 参考作物腾发量预报在线训练深度学习模型
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E5%8F%82%E8%80%83%E4%BD%9C%E7%89%A9%E8%85%BE%E5%8F%91%E9%87%8F%E9%A2%84%E6%8A%A5%E5%9C%A8%E7%BA%BF%E8%AE%AD%E7%BB%83%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E6%A8%A1%E5%9E%8B&rft.jtitle=Guan%CA%BBgai%20paishui%20xuebao&rft.au=DENG%20Xuanying&rft.date=2024-01-01&rft.volume=43&rft.issue=12&rft.spage=57&rft.pages=57-&rft.issn=1672-3317&rft_id=info:doi/10.13522/j.cnki.ggps.2024176&rft_dat=%3Cproquest%3E3149880694%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149880694&rft_id=info:pmid/&rfr_iscdi=true