参考作物腾发量预报在线训练深度学习模型
【目的】探究参考作物腾发量(ET0)的实时预报方法。【方法】以浙江省杭州市萧山区2021年4月24日—2023年12月31日的天气预报数据和整点天气实况资料为数据集,分析模型输入数据的预报精度,采用BP神经网络算法构建ET0预报的深度学习模型,并部署至阿里云服务器进行在线训练。【结果】模型的输入数据中,气温预报准确率较高,且最低气温预报精度高于最高气温,天气类型及风力等级预报存在一定误差。模型预报值与实时数据计算得到的标准值相比,预见期内二者变化趋势大致相同,预报精度较高,训练期与测试期准确率最高分别可达到91.56%和84.75%,训练期均方根误差(RMSE)与平均绝对误差(MAE)平均值分...
Gespeichert in:
Veröffentlicht in: | Guanʻgai paishui xuebao 2024-01, Vol.43 (12), p.57 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 57 |
container_title | Guanʻgai paishui xuebao |
container_volume | 43 |
creator | DENG Xuanying LYU Xinwei ZHENG Wenyan ZHENG Shizong ZHANG, Yadong LUO Tongyuan CUI Yuanlai LUO Yufeng |
description | 【目的】探究参考作物腾发量(ET0)的实时预报方法。【方法】以浙江省杭州市萧山区2021年4月24日—2023年12月31日的天气预报数据和整点天气实况资料为数据集,分析模型输入数据的预报精度,采用BP神经网络算法构建ET0预报的深度学习模型,并部署至阿里云服务器进行在线训练。【结果】模型的输入数据中,气温预报准确率较高,且最低气温预报精度高于最高气温,天气类型及风力等级预报存在一定误差。模型预报值与实时数据计算得到的标准值相比,预见期内二者变化趋势大致相同,预报精度较高,训练期与测试期准确率最高分别可达到91.56%和84.75%,训练期均方根误差(RMSE)与平均绝对误差(MAE)平均值分别为0.828 mm/d和0.667 mm/d,测试期RMSE与MAE平均值分别为1.049 mm/d和0.829 mm/d。【结论】采用公共天气预报数据构建BP模型在线训练,能够实现ET0的实时预报,精度较高且便于运用,可为农业工作者实时灌溉决策提供数据支撑。 |
doi_str_mv | 10.13522/j.cnki.ggps.2024176 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3149880694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149880694</sourcerecordid><originalsourceid>FETCH-proquest_journals_31498806943</originalsourceid><addsrcrecordid>eNpjYJAxNNAzNDY1MtLP0kvOy87US08vKNYzMjAyMTQ3Y2HgNDQzN9I1NjY052DgLS7OTDIwMDQ0AGow42SwfNrf9KKh-cneOc87V75o3fe0f-LL9v6Xi1qedS19OmfF8137X6xb-3x387PtG5_uWvZ07bInOxc8W7Hw6bxuHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzY0sbSwMDCzNDEmThUAc8NRmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149880694</pqid></control><display><type>article</type><title>参考作物腾发量预报在线训练深度学习模型</title><source>DOAJ Directory of Open Access Journals</source><creator>DENG Xuanying ; LYU Xinwei ; ZHENG Wenyan ; ZHENG Shizong ; ZHANG, Yadong ; LUO Tongyuan ; CUI Yuanlai ; LUO Yufeng</creator><creatorcontrib>DENG Xuanying ; LYU Xinwei ; ZHENG Wenyan ; ZHENG Shizong ; ZHANG, Yadong ; LUO Tongyuan ; CUI Yuanlai ; LUO Yufeng</creatorcontrib><description>【目的】探究参考作物腾发量(ET0)的实时预报方法。【方法】以浙江省杭州市萧山区2021年4月24日—2023年12月31日的天气预报数据和整点天气实况资料为数据集,分析模型输入数据的预报精度,采用BP神经网络算法构建ET0预报的深度学习模型,并部署至阿里云服务器进行在线训练。【结果】模型的输入数据中,气温预报准确率较高,且最低气温预报精度高于最高气温,天气类型及风力等级预报存在一定误差。模型预报值与实时数据计算得到的标准值相比,预见期内二者变化趋势大致相同,预报精度较高,训练期与测试期准确率最高分别可达到91.56%和84.75%,训练期均方根误差(RMSE)与平均绝对误差(MAE)平均值分别为0.828 mm/d和0.667 mm/d,测试期RMSE与MAE平均值分别为1.049 mm/d和0.829 mm/d。【结论】采用公共天气预报数据构建BP模型在线训练,能够实现ET0的实时预报,精度较高且便于运用,可为农业工作者实时灌溉决策提供数据支撑。</description><identifier>ISSN: 1672-3317</identifier><identifier>DOI: 10.13522/j.cnki.ggps.2024176</identifier><language>chi ; eng</language><publisher>Xinxiang City: Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage</publisher><subject>Accuracy ; Algorithms ; Back propagation networks ; Deep learning ; Evapotranspiration ; Irrigation ; Irrigation water ; Lead time ; Machine learning ; Meteorological data ; Neural networks ; Online instruction ; Parameters ; Real time ; Root-mean-square errors ; Training ; Water management ; Weather ; Weather forecasting</subject><ispartof>Guanʻgai paishui xuebao, 2024-01, Vol.43 (12), p.57</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>DENG Xuanying</creatorcontrib><creatorcontrib>LYU Xinwei</creatorcontrib><creatorcontrib>ZHENG Wenyan</creatorcontrib><creatorcontrib>ZHENG Shizong</creatorcontrib><creatorcontrib>ZHANG, Yadong</creatorcontrib><creatorcontrib>LUO Tongyuan</creatorcontrib><creatorcontrib>CUI Yuanlai</creatorcontrib><creatorcontrib>LUO Yufeng</creatorcontrib><title>参考作物腾发量预报在线训练深度学习模型</title><title>Guanʻgai paishui xuebao</title><description>【目的】探究参考作物腾发量(ET0)的实时预报方法。【方法】以浙江省杭州市萧山区2021年4月24日—2023年12月31日的天气预报数据和整点天气实况资料为数据集,分析模型输入数据的预报精度,采用BP神经网络算法构建ET0预报的深度学习模型,并部署至阿里云服务器进行在线训练。【结果】模型的输入数据中,气温预报准确率较高,且最低气温预报精度高于最高气温,天气类型及风力等级预报存在一定误差。模型预报值与实时数据计算得到的标准值相比,预见期内二者变化趋势大致相同,预报精度较高,训练期与测试期准确率最高分别可达到91.56%和84.75%,训练期均方根误差(RMSE)与平均绝对误差(MAE)平均值分别为0.828 mm/d和0.667 mm/d,测试期RMSE与MAE平均值分别为1.049 mm/d和0.829 mm/d。【结论】采用公共天气预报数据构建BP模型在线训练,能够实现ET0的实时预报,精度较高且便于运用,可为农业工作者实时灌溉决策提供数据支撑。</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Back propagation networks</subject><subject>Deep learning</subject><subject>Evapotranspiration</subject><subject>Irrigation</subject><subject>Irrigation water</subject><subject>Lead time</subject><subject>Machine learning</subject><subject>Meteorological data</subject><subject>Neural networks</subject><subject>Online instruction</subject><subject>Parameters</subject><subject>Real time</subject><subject>Root-mean-square errors</subject><subject>Training</subject><subject>Water management</subject><subject>Weather</subject><subject>Weather forecasting</subject><issn>1672-3317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYJAxNNAzNDY1MtLP0kvOy87US08vKNYzMjAyMTQ3Y2HgNDQzN9I1NjY052DgLS7OTDIwMDQ0AGow42SwfNrf9KKh-cneOc87V75o3fe0f-LL9v6Xi1qedS19OmfF8137X6xb-3x387PtG5_uWvZ07bInOxc8W7Hw6bxuHgbWtMSc4lReKM3NoOzmGuLsoVtQlF9YmlpcEp-VX1qUB5SKNzY0sbSwMDCzNDEmThUAc8NRmA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>DENG Xuanying</creator><creator>LYU Xinwei</creator><creator>ZHENG Wenyan</creator><creator>ZHENG Shizong</creator><creator>ZHANG, Yadong</creator><creator>LUO Tongyuan</creator><creator>CUI Yuanlai</creator><creator>LUO Yufeng</creator><general>Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage</general><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20240101</creationdate><title>参考作物腾发量预报在线训练深度学习模型</title><author>DENG Xuanying ; LYU Xinwei ; ZHENG Wenyan ; ZHENG Shizong ; ZHANG, Yadong ; LUO Tongyuan ; CUI Yuanlai ; LUO Yufeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31498806943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>chi ; eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Back propagation networks</topic><topic>Deep learning</topic><topic>Evapotranspiration</topic><topic>Irrigation</topic><topic>Irrigation water</topic><topic>Lead time</topic><topic>Machine learning</topic><topic>Meteorological data</topic><topic>Neural networks</topic><topic>Online instruction</topic><topic>Parameters</topic><topic>Real time</topic><topic>Root-mean-square errors</topic><topic>Training</topic><topic>Water management</topic><topic>Weather</topic><topic>Weather forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>DENG Xuanying</creatorcontrib><creatorcontrib>LYU Xinwei</creatorcontrib><creatorcontrib>ZHENG Wenyan</creatorcontrib><creatorcontrib>ZHENG Shizong</creatorcontrib><creatorcontrib>ZHANG, Yadong</creatorcontrib><creatorcontrib>LUO Tongyuan</creatorcontrib><creatorcontrib>CUI Yuanlai</creatorcontrib><creatorcontrib>LUO Yufeng</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Guanʻgai paishui xuebao</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DENG Xuanying</au><au>LYU Xinwei</au><au>ZHENG Wenyan</au><au>ZHENG Shizong</au><au>ZHANG, Yadong</au><au>LUO Tongyuan</au><au>CUI Yuanlai</au><au>LUO Yufeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>参考作物腾发量预报在线训练深度学习模型</atitle><jtitle>Guanʻgai paishui xuebao</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>43</volume><issue>12</issue><spage>57</spage><pages>57-</pages><issn>1672-3317</issn><abstract>【目的】探究参考作物腾发量(ET0)的实时预报方法。【方法】以浙江省杭州市萧山区2021年4月24日—2023年12月31日的天气预报数据和整点天气实况资料为数据集,分析模型输入数据的预报精度,采用BP神经网络算法构建ET0预报的深度学习模型,并部署至阿里云服务器进行在线训练。【结果】模型的输入数据中,气温预报准确率较高,且最低气温预报精度高于最高气温,天气类型及风力等级预报存在一定误差。模型预报值与实时数据计算得到的标准值相比,预见期内二者变化趋势大致相同,预报精度较高,训练期与测试期准确率最高分别可达到91.56%和84.75%,训练期均方根误差(RMSE)与平均绝对误差(MAE)平均值分别为0.828 mm/d和0.667 mm/d,测试期RMSE与MAE平均值分别为1.049 mm/d和0.829 mm/d。【结论】采用公共天气预报数据构建BP模型在线训练,能够实现ET0的实时预报,精度较高且便于运用,可为农业工作者实时灌溉决策提供数据支撑。</abstract><cop>Xinxiang City</cop><pub>Chinese Academy of Agricultural Sciences (CAAS) Farmland Irrigation Research Institute Editorial Office of Journal of Irrigation and Drainage</pub><doi>10.13522/j.cnki.ggps.2024176</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-3317 |
ispartof | Guanʻgai paishui xuebao, 2024-01, Vol.43 (12), p.57 |
issn | 1672-3317 |
language | chi ; eng |
recordid | cdi_proquest_journals_3149880694 |
source | DOAJ Directory of Open Access Journals |
subjects | Accuracy Algorithms Back propagation networks Deep learning Evapotranspiration Irrigation Irrigation water Lead time Machine learning Meteorological data Neural networks Online instruction Parameters Real time Root-mean-square errors Training Water management Weather Weather forecasting |
title | 参考作物腾发量预报在线训练深度学习模型 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E5%8F%82%E8%80%83%E4%BD%9C%E7%89%A9%E8%85%BE%E5%8F%91%E9%87%8F%E9%A2%84%E6%8A%A5%E5%9C%A8%E7%BA%BF%E8%AE%AD%E7%BB%83%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E6%A8%A1%E5%9E%8B&rft.jtitle=Guan%CA%BBgai%20paishui%20xuebao&rft.au=DENG%20Xuanying&rft.date=2024-01-01&rft.volume=43&rft.issue=12&rft.spage=57&rft.pages=57-&rft.issn=1672-3317&rft_id=info:doi/10.13522/j.cnki.ggps.2024176&rft_dat=%3Cproquest%3E3149880694%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149880694&rft_id=info:pmid/&rfr_iscdi=true |