Travel time tomography by ray tracing using the fast sweeping method
This paper presents a gradient-descent travel time tomography method for solving the acoustic-type velocity model inversion problem. Similarly to the adjoint-state method, the proposed method is based on the Eikonal equation, enabling simultaneous calculation of contributions from all common-source...
Gespeichert in:
Veröffentlicht in: | Applied geophysics 2024, Vol.21 (4), p.697-714 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 714 |
---|---|
container_issue | 4 |
container_start_page | 697 |
container_title | Applied geophysics |
container_volume | 21 |
creator | Tang, Huai-gu Xie, Ren-jun Wu, Yi Zhou, Chang-suo Yuan, Jun-liang Qin, Wei |
description | This paper presents a gradient-descent travel time tomography method for solving the acoustic-type velocity model inversion problem. Similarly to the adjoint-state method, the proposed method is based on the Eikonal equation, enabling simultaneous calculation of contributions from all common-source receivers to the gradient. This overcomes the inefficiency inherent in conventional travel time tomography methods, which rely on a two-point ray tracing process. By directly calculating Fréchet derivatives, our method avoids the complex derivation processes associated with the adjoint-state method. The key to calculating the Fréchet derivatives is to calculate a so-called ray-path term. Consequently, compared to the adjoint-state method, the proposed method can explicitly obtain the ray paths, resulting in a more concise and intuitive derivation process. Furthermore, our method retains the benefits of the adjoint-state method, such as speed, low memory usage, and robustness. This paper focuses on elucidating the principles and algorithms for calculating the ray-path term based on the fast sweeping method. The algorithms could be further speeded up by using parallel computational techniques. Synthetic tests demonstrate that our proposed travel time tomographic method accurately calculates ray paths, regardless of the complexity of the model and recording geometry. |
doi_str_mv | 10.1007/s11770-024-1095-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3149878251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149878251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-97e55cde55a3301bdbf2f8d658a8dec1040977dda5de95c368177d60614e162a3</originalsourceid><addsrcrecordid>eNp1UMtKBDEQDKLg-vgAbwHP0XQyeR1lfcKCl_UcspPMPtjZGZOsMn9vhhE8ealumqrq7kLoBugdUKruE4BSlFBWEaBGEHmCZmAMJ1QKfVp6qRhRRolzdJHSjlLJmaxm6HEZ3VfY47xtA85d262j6zcDXg04ugHn6OrtYY2PacS8CbhxKeP0HUI_TtqQN52_QmeN26dw_Vsv0cfz03L-ShbvL2_zhwWpmdSZGBWEqH0BxzmFlV81rNG-HOi0DzXQihqlvHfCByNqLnX5yUsqoQogmeOX6Hby7WP3eQwp2113jIey0nKojFaaCSgsmFh17FKKobF93LYuDhaoHcOyU1i2hGXHsKwsGjZpUuEe1iH-Of8v-gERFmwj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149878251</pqid></control><display><type>article</type><title>Travel time tomography by ray tracing using the fast sweeping method</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Tang, Huai-gu ; Xie, Ren-jun ; Wu, Yi ; Zhou, Chang-suo ; Yuan, Jun-liang ; Qin, Wei</creator><creatorcontrib>Tang, Huai-gu ; Xie, Ren-jun ; Wu, Yi ; Zhou, Chang-suo ; Yuan, Jun-liang ; Qin, Wei</creatorcontrib><description>This paper presents a gradient-descent travel time tomography method for solving the acoustic-type velocity model inversion problem. Similarly to the adjoint-state method, the proposed method is based on the Eikonal equation, enabling simultaneous calculation of contributions from all common-source receivers to the gradient. This overcomes the inefficiency inherent in conventional travel time tomography methods, which rely on a two-point ray tracing process. By directly calculating Fréchet derivatives, our method avoids the complex derivation processes associated with the adjoint-state method. The key to calculating the Fréchet derivatives is to calculate a so-called ray-path term. Consequently, compared to the adjoint-state method, the proposed method can explicitly obtain the ray paths, resulting in a more concise and intuitive derivation process. Furthermore, our method retains the benefits of the adjoint-state method, such as speed, low memory usage, and robustness. This paper focuses on elucidating the principles and algorithms for calculating the ray-path term based on the fast sweeping method. The algorithms could be further speeded up by using parallel computational techniques. Synthetic tests demonstrate that our proposed travel time tomographic method accurately calculates ray paths, regardless of the complexity of the model and recording geometry.</description><identifier>ISSN: 1672-7975</identifier><identifier>EISSN: 1993-0658</identifier><identifier>DOI: 10.1007/s11770-024-1095-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Complexity ; Derivation ; Earth and Environmental Science ; Earth Sciences ; Eikonal equation ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; Ray paths ; Ray tracing ; Sweeping ; Tomography ; Travel ; Travel time</subject><ispartof>Applied geophysics, 2024, Vol.21 (4), p.697-714</ispartof><rights>The Editorial Department of APPLIED GEOPHYSICS 2024</rights><rights>Copyright Springer Nature B.V. 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-97e55cde55a3301bdbf2f8d658a8dec1040977dda5de95c368177d60614e162a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11770-024-1095-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11770-024-1095-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tang, Huai-gu</creatorcontrib><creatorcontrib>Xie, Ren-jun</creatorcontrib><creatorcontrib>Wu, Yi</creatorcontrib><creatorcontrib>Zhou, Chang-suo</creatorcontrib><creatorcontrib>Yuan, Jun-liang</creatorcontrib><creatorcontrib>Qin, Wei</creatorcontrib><title>Travel time tomography by ray tracing using the fast sweeping method</title><title>Applied geophysics</title><addtitle>Appl. Geophys</addtitle><description>This paper presents a gradient-descent travel time tomography method for solving the acoustic-type velocity model inversion problem. Similarly to the adjoint-state method, the proposed method is based on the Eikonal equation, enabling simultaneous calculation of contributions from all common-source receivers to the gradient. This overcomes the inefficiency inherent in conventional travel time tomography methods, which rely on a two-point ray tracing process. By directly calculating Fréchet derivatives, our method avoids the complex derivation processes associated with the adjoint-state method. The key to calculating the Fréchet derivatives is to calculate a so-called ray-path term. Consequently, compared to the adjoint-state method, the proposed method can explicitly obtain the ray paths, resulting in a more concise and intuitive derivation process. Furthermore, our method retains the benefits of the adjoint-state method, such as speed, low memory usage, and robustness. This paper focuses on elucidating the principles and algorithms for calculating the ray-path term based on the fast sweeping method. The algorithms could be further speeded up by using parallel computational techniques. Synthetic tests demonstrate that our proposed travel time tomographic method accurately calculates ray paths, regardless of the complexity of the model and recording geometry.</description><subject>Algorithms</subject><subject>Complexity</subject><subject>Derivation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Eikonal equation</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Ray paths</subject><subject>Ray tracing</subject><subject>Sweeping</subject><subject>Tomography</subject><subject>Travel</subject><subject>Travel time</subject><issn>1672-7975</issn><issn>1993-0658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKBDEQDKLg-vgAbwHP0XQyeR1lfcKCl_UcspPMPtjZGZOsMn9vhhE8ealumqrq7kLoBugdUKruE4BSlFBWEaBGEHmCZmAMJ1QKfVp6qRhRRolzdJHSjlLJmaxm6HEZ3VfY47xtA85d262j6zcDXg04ugHn6OrtYY2PacS8CbhxKeP0HUI_TtqQN52_QmeN26dw_Vsv0cfz03L-ShbvL2_zhwWpmdSZGBWEqH0BxzmFlV81rNG-HOi0DzXQihqlvHfCByNqLnX5yUsqoQogmeOX6Hby7WP3eQwp2113jIey0nKojFaaCSgsmFh17FKKobF93LYuDhaoHcOyU1i2hGXHsKwsGjZpUuEe1iH-Of8v-gERFmwj</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tang, Huai-gu</creator><creator>Xie, Ren-jun</creator><creator>Wu, Yi</creator><creator>Zhou, Chang-suo</creator><creator>Yuan, Jun-liang</creator><creator>Qin, Wei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>2024</creationdate><title>Travel time tomography by ray tracing using the fast sweeping method</title><author>Tang, Huai-gu ; Xie, Ren-jun ; Wu, Yi ; Zhou, Chang-suo ; Yuan, Jun-liang ; Qin, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-97e55cde55a3301bdbf2f8d658a8dec1040977dda5de95c368177d60614e162a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Complexity</topic><topic>Derivation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Eikonal equation</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Ray paths</topic><topic>Ray tracing</topic><topic>Sweeping</topic><topic>Tomography</topic><topic>Travel</topic><topic>Travel time</topic><toplevel>online_resources</toplevel><creatorcontrib>Tang, Huai-gu</creatorcontrib><creatorcontrib>Xie, Ren-jun</creatorcontrib><creatorcontrib>Wu, Yi</creatorcontrib><creatorcontrib>Zhou, Chang-suo</creatorcontrib><creatorcontrib>Yuan, Jun-liang</creatorcontrib><creatorcontrib>Qin, Wei</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Huai-gu</au><au>Xie, Ren-jun</au><au>Wu, Yi</au><au>Zhou, Chang-suo</au><au>Yuan, Jun-liang</au><au>Qin, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Travel time tomography by ray tracing using the fast sweeping method</atitle><jtitle>Applied geophysics</jtitle><stitle>Appl. Geophys</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>697</spage><epage>714</epage><pages>697-714</pages><issn>1672-7975</issn><eissn>1993-0658</eissn><abstract>This paper presents a gradient-descent travel time tomography method for solving the acoustic-type velocity model inversion problem. Similarly to the adjoint-state method, the proposed method is based on the Eikonal equation, enabling simultaneous calculation of contributions from all common-source receivers to the gradient. This overcomes the inefficiency inherent in conventional travel time tomography methods, which rely on a two-point ray tracing process. By directly calculating Fréchet derivatives, our method avoids the complex derivation processes associated with the adjoint-state method. The key to calculating the Fréchet derivatives is to calculate a so-called ray-path term. Consequently, compared to the adjoint-state method, the proposed method can explicitly obtain the ray paths, resulting in a more concise and intuitive derivation process. Furthermore, our method retains the benefits of the adjoint-state method, such as speed, low memory usage, and robustness. This paper focuses on elucidating the principles and algorithms for calculating the ray-path term based on the fast sweeping method. The algorithms could be further speeded up by using parallel computational techniques. Synthetic tests demonstrate that our proposed travel time tomographic method accurately calculates ray paths, regardless of the complexity of the model and recording geometry.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11770-024-1095-6</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1672-7975 |
ispartof | Applied geophysics, 2024, Vol.21 (4), p.697-714 |
issn | 1672-7975 1993-0658 |
language | eng |
recordid | cdi_proquest_journals_3149878251 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Algorithms Complexity Derivation Earth and Environmental Science Earth Sciences Eikonal equation Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences Ray paths Ray tracing Sweeping Tomography Travel Travel time |
title | Travel time tomography by ray tracing using the fast sweeping method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Travel%20time%20tomography%20by%20ray%20tracing%20using%20the%20fast%20sweeping%20method&rft.jtitle=Applied%20geophysics&rft.au=Tang,%20Huai-gu&rft.date=2024&rft.volume=21&rft.issue=4&rft.spage=697&rft.epage=714&rft.pages=697-714&rft.issn=1672-7975&rft.eissn=1993-0658&rft_id=info:doi/10.1007/s11770-024-1095-6&rft_dat=%3Cproquest_cross%3E3149878251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149878251&rft_id=info:pmid/&rfr_iscdi=true |