Travel time tomography by ray tracing using the fast sweeping method

This paper presents a gradient-descent travel time tomography method for solving the acoustic-type velocity model inversion problem. Similarly to the adjoint-state method, the proposed method is based on the Eikonal equation, enabling simultaneous calculation of contributions from all common-source...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied geophysics 2024, Vol.21 (4), p.697-714
Hauptverfasser: Tang, Huai-gu, Xie, Ren-jun, Wu, Yi, Zhou, Chang-suo, Yuan, Jun-liang, Qin, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 714
container_issue 4
container_start_page 697
container_title Applied geophysics
container_volume 21
creator Tang, Huai-gu
Xie, Ren-jun
Wu, Yi
Zhou, Chang-suo
Yuan, Jun-liang
Qin, Wei
description This paper presents a gradient-descent travel time tomography method for solving the acoustic-type velocity model inversion problem. Similarly to the adjoint-state method, the proposed method is based on the Eikonal equation, enabling simultaneous calculation of contributions from all common-source receivers to the gradient. This overcomes the inefficiency inherent in conventional travel time tomography methods, which rely on a two-point ray tracing process. By directly calculating Fréchet derivatives, our method avoids the complex derivation processes associated with the adjoint-state method. The key to calculating the Fréchet derivatives is to calculate a so-called ray-path term. Consequently, compared to the adjoint-state method, the proposed method can explicitly obtain the ray paths, resulting in a more concise and intuitive derivation process. Furthermore, our method retains the benefits of the adjoint-state method, such as speed, low memory usage, and robustness. This paper focuses on elucidating the principles and algorithms for calculating the ray-path term based on the fast sweeping method. The algorithms could be further speeded up by using parallel computational techniques. Synthetic tests demonstrate that our proposed travel time tomographic method accurately calculates ray paths, regardless of the complexity of the model and recording geometry.
doi_str_mv 10.1007/s11770-024-1095-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3149878251</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149878251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-97e55cde55a3301bdbf2f8d658a8dec1040977dda5de95c368177d60614e162a3</originalsourceid><addsrcrecordid>eNp1UMtKBDEQDKLg-vgAbwHP0XQyeR1lfcKCl_UcspPMPtjZGZOsMn9vhhE8ealumqrq7kLoBugdUKruE4BSlFBWEaBGEHmCZmAMJ1QKfVp6qRhRRolzdJHSjlLJmaxm6HEZ3VfY47xtA85d262j6zcDXg04ugHn6OrtYY2PacS8CbhxKeP0HUI_TtqQN52_QmeN26dw_Vsv0cfz03L-ShbvL2_zhwWpmdSZGBWEqH0BxzmFlV81rNG-HOi0DzXQihqlvHfCByNqLnX5yUsqoQogmeOX6Hby7WP3eQwp2113jIey0nKojFaaCSgsmFh17FKKobF93LYuDhaoHcOyU1i2hGXHsKwsGjZpUuEe1iH-Of8v-gERFmwj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149878251</pqid></control><display><type>article</type><title>Travel time tomography by ray tracing using the fast sweeping method</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Tang, Huai-gu ; Xie, Ren-jun ; Wu, Yi ; Zhou, Chang-suo ; Yuan, Jun-liang ; Qin, Wei</creator><creatorcontrib>Tang, Huai-gu ; Xie, Ren-jun ; Wu, Yi ; Zhou, Chang-suo ; Yuan, Jun-liang ; Qin, Wei</creatorcontrib><description>This paper presents a gradient-descent travel time tomography method for solving the acoustic-type velocity model inversion problem. Similarly to the adjoint-state method, the proposed method is based on the Eikonal equation, enabling simultaneous calculation of contributions from all common-source receivers to the gradient. This overcomes the inefficiency inherent in conventional travel time tomography methods, which rely on a two-point ray tracing process. By directly calculating Fréchet derivatives, our method avoids the complex derivation processes associated with the adjoint-state method. The key to calculating the Fréchet derivatives is to calculate a so-called ray-path term. Consequently, compared to the adjoint-state method, the proposed method can explicitly obtain the ray paths, resulting in a more concise and intuitive derivation process. Furthermore, our method retains the benefits of the adjoint-state method, such as speed, low memory usage, and robustness. This paper focuses on elucidating the principles and algorithms for calculating the ray-path term based on the fast sweeping method. The algorithms could be further speeded up by using parallel computational techniques. Synthetic tests demonstrate that our proposed travel time tomographic method accurately calculates ray paths, regardless of the complexity of the model and recording geometry.</description><identifier>ISSN: 1672-7975</identifier><identifier>EISSN: 1993-0658</identifier><identifier>DOI: 10.1007/s11770-024-1095-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Complexity ; Derivation ; Earth and Environmental Science ; Earth Sciences ; Eikonal equation ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Ray paths ; Ray tracing ; Sweeping ; Tomography ; Travel ; Travel time</subject><ispartof>Applied geophysics, 2024, Vol.21 (4), p.697-714</ispartof><rights>The Editorial Department of APPLIED GEOPHYSICS 2024</rights><rights>Copyright Springer Nature B.V. 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-97e55cde55a3301bdbf2f8d658a8dec1040977dda5de95c368177d60614e162a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11770-024-1095-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11770-024-1095-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tang, Huai-gu</creatorcontrib><creatorcontrib>Xie, Ren-jun</creatorcontrib><creatorcontrib>Wu, Yi</creatorcontrib><creatorcontrib>Zhou, Chang-suo</creatorcontrib><creatorcontrib>Yuan, Jun-liang</creatorcontrib><creatorcontrib>Qin, Wei</creatorcontrib><title>Travel time tomography by ray tracing using the fast sweeping method</title><title>Applied geophysics</title><addtitle>Appl. Geophys</addtitle><description>This paper presents a gradient-descent travel time tomography method for solving the acoustic-type velocity model inversion problem. Similarly to the adjoint-state method, the proposed method is based on the Eikonal equation, enabling simultaneous calculation of contributions from all common-source receivers to the gradient. This overcomes the inefficiency inherent in conventional travel time tomography methods, which rely on a two-point ray tracing process. By directly calculating Fréchet derivatives, our method avoids the complex derivation processes associated with the adjoint-state method. The key to calculating the Fréchet derivatives is to calculate a so-called ray-path term. Consequently, compared to the adjoint-state method, the proposed method can explicitly obtain the ray paths, resulting in a more concise and intuitive derivation process. Furthermore, our method retains the benefits of the adjoint-state method, such as speed, low memory usage, and robustness. This paper focuses on elucidating the principles and algorithms for calculating the ray-path term based on the fast sweeping method. The algorithms could be further speeded up by using parallel computational techniques. Synthetic tests demonstrate that our proposed travel time tomographic method accurately calculates ray paths, regardless of the complexity of the model and recording geometry.</description><subject>Algorithms</subject><subject>Complexity</subject><subject>Derivation</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Eikonal equation</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Ray paths</subject><subject>Ray tracing</subject><subject>Sweeping</subject><subject>Tomography</subject><subject>Travel</subject><subject>Travel time</subject><issn>1672-7975</issn><issn>1993-0658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKBDEQDKLg-vgAbwHP0XQyeR1lfcKCl_UcspPMPtjZGZOsMn9vhhE8ealumqrq7kLoBugdUKruE4BSlFBWEaBGEHmCZmAMJ1QKfVp6qRhRRolzdJHSjlLJmaxm6HEZ3VfY47xtA85d262j6zcDXg04ugHn6OrtYY2PacS8CbhxKeP0HUI_TtqQN52_QmeN26dw_Vsv0cfz03L-ShbvL2_zhwWpmdSZGBWEqH0BxzmFlV81rNG-HOi0DzXQihqlvHfCByNqLnX5yUsqoQogmeOX6Hby7WP3eQwp2113jIey0nKojFaaCSgsmFh17FKKobF93LYuDhaoHcOyU1i2hGXHsKwsGjZpUuEe1iH-Of8v-gERFmwj</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Tang, Huai-gu</creator><creator>Xie, Ren-jun</creator><creator>Wu, Yi</creator><creator>Zhou, Chang-suo</creator><creator>Yuan, Jun-liang</creator><creator>Qin, Wei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope></search><sort><creationdate>2024</creationdate><title>Travel time tomography by ray tracing using the fast sweeping method</title><author>Tang, Huai-gu ; Xie, Ren-jun ; Wu, Yi ; Zhou, Chang-suo ; Yuan, Jun-liang ; Qin, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-97e55cde55a3301bdbf2f8d658a8dec1040977dda5de95c368177d60614e162a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Complexity</topic><topic>Derivation</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Eikonal equation</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Ray paths</topic><topic>Ray tracing</topic><topic>Sweeping</topic><topic>Tomography</topic><topic>Travel</topic><topic>Travel time</topic><toplevel>online_resources</toplevel><creatorcontrib>Tang, Huai-gu</creatorcontrib><creatorcontrib>Xie, Ren-jun</creatorcontrib><creatorcontrib>Wu, Yi</creatorcontrib><creatorcontrib>Zhou, Chang-suo</creatorcontrib><creatorcontrib>Yuan, Jun-liang</creatorcontrib><creatorcontrib>Qin, Wei</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Huai-gu</au><au>Xie, Ren-jun</au><au>Wu, Yi</au><au>Zhou, Chang-suo</au><au>Yuan, Jun-liang</au><au>Qin, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Travel time tomography by ray tracing using the fast sweeping method</atitle><jtitle>Applied geophysics</jtitle><stitle>Appl. Geophys</stitle><date>2024</date><risdate>2024</risdate><volume>21</volume><issue>4</issue><spage>697</spage><epage>714</epage><pages>697-714</pages><issn>1672-7975</issn><eissn>1993-0658</eissn><abstract>This paper presents a gradient-descent travel time tomography method for solving the acoustic-type velocity model inversion problem. Similarly to the adjoint-state method, the proposed method is based on the Eikonal equation, enabling simultaneous calculation of contributions from all common-source receivers to the gradient. This overcomes the inefficiency inherent in conventional travel time tomography methods, which rely on a two-point ray tracing process. By directly calculating Fréchet derivatives, our method avoids the complex derivation processes associated with the adjoint-state method. The key to calculating the Fréchet derivatives is to calculate a so-called ray-path term. Consequently, compared to the adjoint-state method, the proposed method can explicitly obtain the ray paths, resulting in a more concise and intuitive derivation process. Furthermore, our method retains the benefits of the adjoint-state method, such as speed, low memory usage, and robustness. This paper focuses on elucidating the principles and algorithms for calculating the ray-path term based on the fast sweeping method. The algorithms could be further speeded up by using parallel computational techniques. Synthetic tests demonstrate that our proposed travel time tomographic method accurately calculates ray paths, regardless of the complexity of the model and recording geometry.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11770-024-1095-6</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1672-7975
ispartof Applied geophysics, 2024, Vol.21 (4), p.697-714
issn 1672-7975
1993-0658
language eng
recordid cdi_proquest_journals_3149878251
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Algorithms
Complexity
Derivation
Earth and Environmental Science
Earth Sciences
Eikonal equation
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Ray paths
Ray tracing
Sweeping
Tomography
Travel
Travel time
title Travel time tomography by ray tracing using the fast sweeping method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Travel%20time%20tomography%20by%20ray%20tracing%20using%20the%20fast%20sweeping%20method&rft.jtitle=Applied%20geophysics&rft.au=Tang,%20Huai-gu&rft.date=2024&rft.volume=21&rft.issue=4&rft.spage=697&rft.epage=714&rft.pages=697-714&rft.issn=1672-7975&rft.eissn=1993-0658&rft_id=info:doi/10.1007/s11770-024-1095-6&rft_dat=%3Cproquest_cross%3E3149878251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149878251&rft_id=info:pmid/&rfr_iscdi=true