Lithium Localization by Anions in Argyrodite Solid Electrolytes from Machine‐Learning‐based Simulations

The introduction of density functional theory (DFT) has improved the study of material properties. This has enabled significant breakthroughs in solid electrolytes, which have emerged as promising candidates for next‐generation energy storage systems. However, DFT faces limitations due to the extrem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2024-12, Vol.14 (48), p.n/a
Hauptverfasser: Lee, Hyun‐Jae, Kim, Hyeonjung, Ji, Sungyoung, Choi, Kyuri, Choi, Ho, Lim, Woosang, Lee, Byungju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 48
container_start_page
container_title Advanced energy materials
container_volume 14
creator Lee, Hyun‐Jae
Kim, Hyeonjung
Ji, Sungyoung
Choi, Kyuri
Choi, Ho
Lim, Woosang
Lee, Byungju
description The introduction of density functional theory (DFT) has improved the study of material properties. This has enabled significant breakthroughs in solid electrolytes, which have emerged as promising candidates for next‐generation energy storage systems. However, DFT faces limitations due to the extremely high computational costs required for large atomic cells and long simulation times. In the current study, AI‐based simulations using neural network potentials (NNPs) are introduced to extend the capabilities of DFT to explore the effect of anions on lithium diffusion in Li argyrodite (Li6PS5X, X = Cl and Br). The investigation categorizes lithium frameworks into two distinct cages, demonstrating that sulfur ions in these cage centers bind the surrounding lithium ions. From the results, a strategy is proposed to enhance lithium ion conductivity by minimizing the occupation of sulfur ions in cage centers. This research provides a benchmark for evaluating lithium ionic conductivity based on anion configuration in cage centers and advances the understanding of ionic transport in Li argyrodite, informing potential improvements in energy‐storage technologies. In current research, it is revealed that lithium ions are localized by highly charged anions such as sulfur ions, significantly impeding lithium transport. Consequently, the lithium ionic conductivity can be enhanced by an effective charge lowering of anions. The investigation also examines previously reported experimental results that demonstrate the theoretical predictions based on machine learning.
doi_str_mv 10.1002/aenm.202402396
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3149803069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149803069</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2026-d9df0906274c8cc55512565a6d5abfaf7ec718e5e0d7fe6efff254e66f53ee873</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EElXpymyJOcVOYicZo6r8SCkMhdlynevWJYmLnQiFiUfgGXkSUorKyF3uGb5zru5B6JKSKSUkvJbQ1NOQhDEJo4yfoBHlNA54GpPTo47CczTxfkuGiTNKomiEXgrTbkxX48IqWZl32Rrb4FWP82YQHpsG527dO1uaFvDSVqbE8wpU62zVt-CxdrbGC6k2poGvj88CpGtMsx7kSnoo8dLUXfWT6i_QmZaVh8nvHqPnm_nT7C4oHm_vZ3kRqOEBHpRZqUlGeJjEKlWKMUZDxpnkJZMrLXUCKqEpMCBlooGD1jpkMXCuWQSQJtEYXR1yd86-duBbsbWda4aTIqJxlpKI8GygpgdKOeu9Ay12ztTS9YISse9U7DsVx04HQ3YwvJkK-n9okc8fFn_eb12IfsU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149803069</pqid></control><display><type>article</type><title>Lithium Localization by Anions in Argyrodite Solid Electrolytes from Machine‐Learning‐based Simulations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lee, Hyun‐Jae ; Kim, Hyeonjung ; Ji, Sungyoung ; Choi, Kyuri ; Choi, Ho ; Lim, Woosang ; Lee, Byungju</creator><creatorcontrib>Lee, Hyun‐Jae ; Kim, Hyeonjung ; Ji, Sungyoung ; Choi, Kyuri ; Choi, Ho ; Lim, Woosang ; Lee, Byungju</creatorcontrib><description>The introduction of density functional theory (DFT) has improved the study of material properties. This has enabled significant breakthroughs in solid electrolytes, which have emerged as promising candidates for next‐generation energy storage systems. However, DFT faces limitations due to the extremely high computational costs required for large atomic cells and long simulation times. In the current study, AI‐based simulations using neural network potentials (NNPs) are introduced to extend the capabilities of DFT to explore the effect of anions on lithium diffusion in Li argyrodite (Li6PS5X, X = Cl and Br). The investigation categorizes lithium frameworks into two distinct cages, demonstrating that sulfur ions in these cage centers bind the surrounding lithium ions. From the results, a strategy is proposed to enhance lithium ion conductivity by minimizing the occupation of sulfur ions in cage centers. This research provides a benchmark for evaluating lithium ionic conductivity based on anion configuration in cage centers and advances the understanding of ionic transport in Li argyrodite, informing potential improvements in energy‐storage technologies. In current research, it is revealed that lithium ions are localized by highly charged anions such as sulfur ions, significantly impeding lithium transport. Consequently, the lithium ionic conductivity can be enhanced by an effective charge lowering of anions. The investigation also examines previously reported experimental results that demonstrate the theoretical predictions based on machine learning.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202402396</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Anions ; argyrodite ; battery ; Cages ; computational material science ; Density functional theory ; Electrolytes ; Electrolytic cells ; Energy costs ; Ion currents ; Lithium ; Lithium ions ; Machine learning ; Material properties ; Molten salt electrolytes ; neural network potential ; Neural networks ; solid electrolyte ; Solid electrolytes ; Sulfur</subject><ispartof>Advanced energy materials, 2024-12, Vol.14 (48), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2026-d9df0906274c8cc55512565a6d5abfaf7ec718e5e0d7fe6efff254e66f53ee873</cites><orcidid>0000-0002-0550-3083 ; 0000-0002-8640-2689</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202402396$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202402396$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lee, Hyun‐Jae</creatorcontrib><creatorcontrib>Kim, Hyeonjung</creatorcontrib><creatorcontrib>Ji, Sungyoung</creatorcontrib><creatorcontrib>Choi, Kyuri</creatorcontrib><creatorcontrib>Choi, Ho</creatorcontrib><creatorcontrib>Lim, Woosang</creatorcontrib><creatorcontrib>Lee, Byungju</creatorcontrib><title>Lithium Localization by Anions in Argyrodite Solid Electrolytes from Machine‐Learning‐based Simulations</title><title>Advanced energy materials</title><description>The introduction of density functional theory (DFT) has improved the study of material properties. This has enabled significant breakthroughs in solid electrolytes, which have emerged as promising candidates for next‐generation energy storage systems. However, DFT faces limitations due to the extremely high computational costs required for large atomic cells and long simulation times. In the current study, AI‐based simulations using neural network potentials (NNPs) are introduced to extend the capabilities of DFT to explore the effect of anions on lithium diffusion in Li argyrodite (Li6PS5X, X = Cl and Br). The investigation categorizes lithium frameworks into two distinct cages, demonstrating that sulfur ions in these cage centers bind the surrounding lithium ions. From the results, a strategy is proposed to enhance lithium ion conductivity by minimizing the occupation of sulfur ions in cage centers. This research provides a benchmark for evaluating lithium ionic conductivity based on anion configuration in cage centers and advances the understanding of ionic transport in Li argyrodite, informing potential improvements in energy‐storage technologies. In current research, it is revealed that lithium ions are localized by highly charged anions such as sulfur ions, significantly impeding lithium transport. Consequently, the lithium ionic conductivity can be enhanced by an effective charge lowering of anions. The investigation also examines previously reported experimental results that demonstrate the theoretical predictions based on machine learning.</description><subject>Anions</subject><subject>argyrodite</subject><subject>battery</subject><subject>Cages</subject><subject>computational material science</subject><subject>Density functional theory</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy costs</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium ions</subject><subject>Machine learning</subject><subject>Material properties</subject><subject>Molten salt electrolytes</subject><subject>neural network potential</subject><subject>Neural networks</subject><subject>solid electrolyte</subject><subject>Solid electrolytes</subject><subject>Sulfur</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EElXpymyJOcVOYicZo6r8SCkMhdlynevWJYmLnQiFiUfgGXkSUorKyF3uGb5zru5B6JKSKSUkvJbQ1NOQhDEJo4yfoBHlNA54GpPTo47CczTxfkuGiTNKomiEXgrTbkxX48IqWZl32Rrb4FWP82YQHpsG527dO1uaFvDSVqbE8wpU62zVt-CxdrbGC6k2poGvj88CpGtMsx7kSnoo8dLUXfWT6i_QmZaVh8nvHqPnm_nT7C4oHm_vZ3kRqOEBHpRZqUlGeJjEKlWKMUZDxpnkJZMrLXUCKqEpMCBlooGD1jpkMXCuWQSQJtEYXR1yd86-duBbsbWda4aTIqJxlpKI8GygpgdKOeu9Ay12ztTS9YISse9U7DsVx04HQ3YwvJkK-n9okc8fFn_eb12IfsU</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Lee, Hyun‐Jae</creator><creator>Kim, Hyeonjung</creator><creator>Ji, Sungyoung</creator><creator>Choi, Kyuri</creator><creator>Choi, Ho</creator><creator>Lim, Woosang</creator><creator>Lee, Byungju</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0550-3083</orcidid><orcidid>https://orcid.org/0000-0002-8640-2689</orcidid></search><sort><creationdate>20241201</creationdate><title>Lithium Localization by Anions in Argyrodite Solid Electrolytes from Machine‐Learning‐based Simulations</title><author>Lee, Hyun‐Jae ; Kim, Hyeonjung ; Ji, Sungyoung ; Choi, Kyuri ; Choi, Ho ; Lim, Woosang ; Lee, Byungju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2026-d9df0906274c8cc55512565a6d5abfaf7ec718e5e0d7fe6efff254e66f53ee873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anions</topic><topic>argyrodite</topic><topic>battery</topic><topic>Cages</topic><topic>computational material science</topic><topic>Density functional theory</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy costs</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium ions</topic><topic>Machine learning</topic><topic>Material properties</topic><topic>Molten salt electrolytes</topic><topic>neural network potential</topic><topic>Neural networks</topic><topic>solid electrolyte</topic><topic>Solid electrolytes</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Hyun‐Jae</creatorcontrib><creatorcontrib>Kim, Hyeonjung</creatorcontrib><creatorcontrib>Ji, Sungyoung</creatorcontrib><creatorcontrib>Choi, Kyuri</creatorcontrib><creatorcontrib>Choi, Ho</creatorcontrib><creatorcontrib>Lim, Woosang</creatorcontrib><creatorcontrib>Lee, Byungju</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Hyun‐Jae</au><au>Kim, Hyeonjung</au><au>Ji, Sungyoung</au><au>Choi, Kyuri</au><au>Choi, Ho</au><au>Lim, Woosang</au><au>Lee, Byungju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium Localization by Anions in Argyrodite Solid Electrolytes from Machine‐Learning‐based Simulations</atitle><jtitle>Advanced energy materials</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>14</volume><issue>48</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The introduction of density functional theory (DFT) has improved the study of material properties. This has enabled significant breakthroughs in solid electrolytes, which have emerged as promising candidates for next‐generation energy storage systems. However, DFT faces limitations due to the extremely high computational costs required for large atomic cells and long simulation times. In the current study, AI‐based simulations using neural network potentials (NNPs) are introduced to extend the capabilities of DFT to explore the effect of anions on lithium diffusion in Li argyrodite (Li6PS5X, X = Cl and Br). The investigation categorizes lithium frameworks into two distinct cages, demonstrating that sulfur ions in these cage centers bind the surrounding lithium ions. From the results, a strategy is proposed to enhance lithium ion conductivity by minimizing the occupation of sulfur ions in cage centers. This research provides a benchmark for evaluating lithium ionic conductivity based on anion configuration in cage centers and advances the understanding of ionic transport in Li argyrodite, informing potential improvements in energy‐storage technologies. In current research, it is revealed that lithium ions are localized by highly charged anions such as sulfur ions, significantly impeding lithium transport. Consequently, the lithium ionic conductivity can be enhanced by an effective charge lowering of anions. The investigation also examines previously reported experimental results that demonstrate the theoretical predictions based on machine learning.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202402396</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0550-3083</orcidid><orcidid>https://orcid.org/0000-0002-8640-2689</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2024-12, Vol.14 (48), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_3149803069
source Wiley Online Library Journals Frontfile Complete
subjects Anions
argyrodite
battery
Cages
computational material science
Density functional theory
Electrolytes
Electrolytic cells
Energy costs
Ion currents
Lithium
Lithium ions
Machine learning
Material properties
Molten salt electrolytes
neural network potential
Neural networks
solid electrolyte
Solid electrolytes
Sulfur
title Lithium Localization by Anions in Argyrodite Solid Electrolytes from Machine‐Learning‐based Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20Localization%20by%20Anions%20in%20Argyrodite%20Solid%20Electrolytes%20from%20Machine%E2%80%90Learning%E2%80%90based%20Simulations&rft.jtitle=Advanced%20energy%20materials&rft.au=Lee,%20Hyun%E2%80%90Jae&rft.date=2024-12-01&rft.volume=14&rft.issue=48&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202402396&rft_dat=%3Cproquest_cross%3E3149803069%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149803069&rft_id=info:pmid/&rfr_iscdi=true