A contrastive news recommendation framework based on curriculum learning
News recommendation is an intelligent technology that aims to provide users with matching news content based on their preferences and interests. Nevertheless, current methodologies exhibit significant limitations. Traditional models often rely on simple random negative sampling for training, an appr...
Gespeichert in:
Veröffentlicht in: | User modeling and user-adapted interaction 2025-03, Vol.35 (1), p.2, Article 2 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 2 |
container_title | User modeling and user-adapted interaction |
container_volume | 35 |
creator | Zhou, Xingran Lin, Nankai Zheng, Weixiong Zhou, Dong Yang, Aimin |
description | News recommendation is an intelligent technology that aims to provide users with matching news content based on their preferences and interests. Nevertheless, current methodologies exhibit significant limitations. Traditional models often rely on simple random negative sampling for training, an approach that insufficiently captures the patterns and preferences of users’ clicking behavior, thereby undermining the model’s effectiveness. Furthermore, these systems often face challenges in insufficient modeling due to the limited nature of user interactions. Considering these challenges, this paper presents a contrastive news recommendation framework based on curriculum learning (CNRCL). Specifically, we relate the negative sampling process to users’ interests and employ curriculum learning to guide the negative sampling procedure. To address the issue of insufficient user interest modeling, we propose to use contrastive learning to bring the user closer to news that is similar to the candidate news, thus enhancing the model’s accuracy in predicting user interests, and compensating for limited click behavior. Extensive experimental results on the MIND dataset verify the effectiveness of the model and improve the performance of news recommendation. Our code can be obtained from https://github.com/IIP-Lab-2024/CNRCL. |
doi_str_mv | 10.1007/s11257-024-09422-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3149795705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149795705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c156t-9533748fd5460f76d2251cd21ce7d934513db0cfb7940e07cb2ced31554fb4793</originalsourceid><addsrcrecordid>eNotkMtKAzEUhoMoWKsv4GrAdfScXCbNshS1QsGNrkMmF5naydRkxuLbO7aufvgv58BHyC3CPQKoh4LIpKLABAUtGKNwRmYoFafINZ6TGegpwkW9uCRXpWxhGtVKz8h6Wbk-DdmWof0OVQqHUuXg-q4Lyduh7VMVs-3Coc-fVWNL8NVkuTHn1o27sat2webUpo9rchHtroSbf52T96fHt9Wabl6fX1bLDXUo64FqybkSi-ilqCGq2jMm0XmGLiivuZDIfQMuNkoLCKBcw1zwHKUUsRFK8zm5O93d5_5rDGUw237MaXppOAqttFQgpxY7tVzuS8khmn1uO5t_DIL5I2ZOxMxEzByJGeC_tvJefQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149795705</pqid></control><display><type>article</type><title>A contrastive news recommendation framework based on curriculum learning</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhou, Xingran ; Lin, Nankai ; Zheng, Weixiong ; Zhou, Dong ; Yang, Aimin</creator><creatorcontrib>Zhou, Xingran ; Lin, Nankai ; Zheng, Weixiong ; Zhou, Dong ; Yang, Aimin</creatorcontrib><description>News recommendation is an intelligent technology that aims to provide users with matching news content based on their preferences and interests. Nevertheless, current methodologies exhibit significant limitations. Traditional models often rely on simple random negative sampling for training, an approach that insufficiently captures the patterns and preferences of users’ clicking behavior, thereby undermining the model’s effectiveness. Furthermore, these systems often face challenges in insufficient modeling due to the limited nature of user interactions. Considering these challenges, this paper presents a contrastive news recommendation framework based on curriculum learning (CNRCL). Specifically, we relate the negative sampling process to users’ interests and employ curriculum learning to guide the negative sampling procedure. To address the issue of insufficient user interest modeling, we propose to use contrastive learning to bring the user closer to news that is similar to the candidate news, thus enhancing the model’s accuracy in predicting user interests, and compensating for limited click behavior. Extensive experimental results on the MIND dataset verify the effectiveness of the model and improve the performance of news recommendation. Our code can be obtained from https://github.com/IIP-Lab-2024/CNRCL.</description><identifier>ISSN: 0924-1868</identifier><identifier>EISSN: 1573-1391</identifier><identifier>DOI: 10.1007/s11257-024-09422-0</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Curricula ; Learning ; Modelling ; News ; Sampling ; System effectiveness</subject><ispartof>User modeling and user-adapted interaction, 2025-03, Vol.35 (1), p.2, Article 2</ispartof><rights>Copyright Springer Nature B.V. Mar 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c156t-9533748fd5460f76d2251cd21ce7d934513db0cfb7940e07cb2ced31554fb4793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhou, Xingran</creatorcontrib><creatorcontrib>Lin, Nankai</creatorcontrib><creatorcontrib>Zheng, Weixiong</creatorcontrib><creatorcontrib>Zhou, Dong</creatorcontrib><creatorcontrib>Yang, Aimin</creatorcontrib><title>A contrastive news recommendation framework based on curriculum learning</title><title>User modeling and user-adapted interaction</title><description>News recommendation is an intelligent technology that aims to provide users with matching news content based on their preferences and interests. Nevertheless, current methodologies exhibit significant limitations. Traditional models often rely on simple random negative sampling for training, an approach that insufficiently captures the patterns and preferences of users’ clicking behavior, thereby undermining the model’s effectiveness. Furthermore, these systems often face challenges in insufficient modeling due to the limited nature of user interactions. Considering these challenges, this paper presents a contrastive news recommendation framework based on curriculum learning (CNRCL). Specifically, we relate the negative sampling process to users’ interests and employ curriculum learning to guide the negative sampling procedure. To address the issue of insufficient user interest modeling, we propose to use contrastive learning to bring the user closer to news that is similar to the candidate news, thus enhancing the model’s accuracy in predicting user interests, and compensating for limited click behavior. Extensive experimental results on the MIND dataset verify the effectiveness of the model and improve the performance of news recommendation. Our code can be obtained from https://github.com/IIP-Lab-2024/CNRCL.</description><subject>Curricula</subject><subject>Learning</subject><subject>Modelling</subject><subject>News</subject><subject>Sampling</subject><subject>System effectiveness</subject><issn>0924-1868</issn><issn>1573-1391</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNotkMtKAzEUhoMoWKsv4GrAdfScXCbNshS1QsGNrkMmF5naydRkxuLbO7aufvgv58BHyC3CPQKoh4LIpKLABAUtGKNwRmYoFafINZ6TGegpwkW9uCRXpWxhGtVKz8h6Wbk-DdmWof0OVQqHUuXg-q4Lyduh7VMVs-3Coc-fVWNL8NVkuTHn1o27sat2webUpo9rchHtroSbf52T96fHt9Wabl6fX1bLDXUo64FqybkSi-ilqCGq2jMm0XmGLiivuZDIfQMuNkoLCKBcw1zwHKUUsRFK8zm5O93d5_5rDGUw237MaXppOAqttFQgpxY7tVzuS8khmn1uO5t_DIL5I2ZOxMxEzByJGeC_tvJefQ</recordid><startdate>202503</startdate><enddate>202503</enddate><creator>Zhou, Xingran</creator><creator>Lin, Nankai</creator><creator>Zheng, Weixiong</creator><creator>Zhou, Dong</creator><creator>Yang, Aimin</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202503</creationdate><title>A contrastive news recommendation framework based on curriculum learning</title><author>Zhou, Xingran ; Lin, Nankai ; Zheng, Weixiong ; Zhou, Dong ; Yang, Aimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c156t-9533748fd5460f76d2251cd21ce7d934513db0cfb7940e07cb2ced31554fb4793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Curricula</topic><topic>Learning</topic><topic>Modelling</topic><topic>News</topic><topic>Sampling</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xingran</creatorcontrib><creatorcontrib>Lin, Nankai</creatorcontrib><creatorcontrib>Zheng, Weixiong</creatorcontrib><creatorcontrib>Zhou, Dong</creatorcontrib><creatorcontrib>Yang, Aimin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>User modeling and user-adapted interaction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xingran</au><au>Lin, Nankai</au><au>Zheng, Weixiong</au><au>Zhou, Dong</au><au>Yang, Aimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A contrastive news recommendation framework based on curriculum learning</atitle><jtitle>User modeling and user-adapted interaction</jtitle><date>2025-03</date><risdate>2025</risdate><volume>35</volume><issue>1</issue><spage>2</spage><pages>2-</pages><artnum>2</artnum><issn>0924-1868</issn><eissn>1573-1391</eissn><abstract>News recommendation is an intelligent technology that aims to provide users with matching news content based on their preferences and interests. Nevertheless, current methodologies exhibit significant limitations. Traditional models often rely on simple random negative sampling for training, an approach that insufficiently captures the patterns and preferences of users’ clicking behavior, thereby undermining the model’s effectiveness. Furthermore, these systems often face challenges in insufficient modeling due to the limited nature of user interactions. Considering these challenges, this paper presents a contrastive news recommendation framework based on curriculum learning (CNRCL). Specifically, we relate the negative sampling process to users’ interests and employ curriculum learning to guide the negative sampling procedure. To address the issue of insufficient user interest modeling, we propose to use contrastive learning to bring the user closer to news that is similar to the candidate news, thus enhancing the model’s accuracy in predicting user interests, and compensating for limited click behavior. Extensive experimental results on the MIND dataset verify the effectiveness of the model and improve the performance of news recommendation. Our code can be obtained from https://github.com/IIP-Lab-2024/CNRCL.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11257-024-09422-0</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-1868 |
ispartof | User modeling and user-adapted interaction, 2025-03, Vol.35 (1), p.2, Article 2 |
issn | 0924-1868 1573-1391 |
language | eng |
recordid | cdi_proquest_journals_3149795705 |
source | SpringerLink Journals - AutoHoldings |
subjects | Curricula Learning Modelling News Sampling System effectiveness |
title | A contrastive news recommendation framework based on curriculum learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20contrastive%20news%20recommendation%20framework%20based%20on%20curriculum%20learning&rft.jtitle=User%20modeling%20and%20user-adapted%20interaction&rft.au=Zhou,%20Xingran&rft.date=2025-03&rft.volume=35&rft.issue=1&rft.spage=2&rft.pages=2-&rft.artnum=2&rft.issn=0924-1868&rft.eissn=1573-1391&rft_id=info:doi/10.1007/s11257-024-09422-0&rft_dat=%3Cproquest_cross%3E3149795705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149795705&rft_id=info:pmid/&rfr_iscdi=true |