A contrastive news recommendation framework based on curriculum learning

News recommendation is an intelligent technology that aims to provide users with matching news content based on their preferences and interests. Nevertheless, current methodologies exhibit significant limitations. Traditional models often rely on simple random negative sampling for training, an appr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:User modeling and user-adapted interaction 2025-03, Vol.35 (1), p.2, Article 2
Hauptverfasser: Zhou, Xingran, Lin, Nankai, Zheng, Weixiong, Zhou, Dong, Yang, Aimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 2
container_title User modeling and user-adapted interaction
container_volume 35
creator Zhou, Xingran
Lin, Nankai
Zheng, Weixiong
Zhou, Dong
Yang, Aimin
description News recommendation is an intelligent technology that aims to provide users with matching news content based on their preferences and interests. Nevertheless, current methodologies exhibit significant limitations. Traditional models often rely on simple random negative sampling for training, an approach that insufficiently captures the patterns and preferences of users’ clicking behavior, thereby undermining the model’s effectiveness. Furthermore, these systems often face challenges in insufficient modeling due to the limited nature of user interactions. Considering these challenges, this paper presents a contrastive news recommendation framework based on curriculum learning (CNRCL). Specifically, we relate the negative sampling process to users’ interests and employ curriculum learning to guide the negative sampling procedure. To address the issue of insufficient user interest modeling, we propose to use contrastive learning to bring the user closer to news that is similar to the candidate news, thus enhancing the model’s accuracy in predicting user interests, and compensating for limited click behavior. Extensive experimental results on the MIND dataset verify the effectiveness of the model and improve the performance of news recommendation. Our code can be obtained from https://github.com/IIP-Lab-2024/CNRCL.
doi_str_mv 10.1007/s11257-024-09422-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3149795705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149795705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c156t-9533748fd5460f76d2251cd21ce7d934513db0cfb7940e07cb2ced31554fb4793</originalsourceid><addsrcrecordid>eNotkMtKAzEUhoMoWKsv4GrAdfScXCbNshS1QsGNrkMmF5naydRkxuLbO7aufvgv58BHyC3CPQKoh4LIpKLABAUtGKNwRmYoFafINZ6TGegpwkW9uCRXpWxhGtVKz8h6Wbk-DdmWof0OVQqHUuXg-q4Lyduh7VMVs-3Coc-fVWNL8NVkuTHn1o27sat2webUpo9rchHtroSbf52T96fHt9Wabl6fX1bLDXUo64FqybkSi-ilqCGq2jMm0XmGLiivuZDIfQMuNkoLCKBcw1zwHKUUsRFK8zm5O93d5_5rDGUw237MaXppOAqttFQgpxY7tVzuS8khmn1uO5t_DIL5I2ZOxMxEzByJGeC_tvJefQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149795705</pqid></control><display><type>article</type><title>A contrastive news recommendation framework based on curriculum learning</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhou, Xingran ; Lin, Nankai ; Zheng, Weixiong ; Zhou, Dong ; Yang, Aimin</creator><creatorcontrib>Zhou, Xingran ; Lin, Nankai ; Zheng, Weixiong ; Zhou, Dong ; Yang, Aimin</creatorcontrib><description>News recommendation is an intelligent technology that aims to provide users with matching news content based on their preferences and interests. Nevertheless, current methodologies exhibit significant limitations. Traditional models often rely on simple random negative sampling for training, an approach that insufficiently captures the patterns and preferences of users’ clicking behavior, thereby undermining the model’s effectiveness. Furthermore, these systems often face challenges in insufficient modeling due to the limited nature of user interactions. Considering these challenges, this paper presents a contrastive news recommendation framework based on curriculum learning (CNRCL). Specifically, we relate the negative sampling process to users’ interests and employ curriculum learning to guide the negative sampling procedure. To address the issue of insufficient user interest modeling, we propose to use contrastive learning to bring the user closer to news that is similar to the candidate news, thus enhancing the model’s accuracy in predicting user interests, and compensating for limited click behavior. Extensive experimental results on the MIND dataset verify the effectiveness of the model and improve the performance of news recommendation. Our code can be obtained from https://github.com/IIP-Lab-2024/CNRCL.</description><identifier>ISSN: 0924-1868</identifier><identifier>EISSN: 1573-1391</identifier><identifier>DOI: 10.1007/s11257-024-09422-0</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Curricula ; Learning ; Modelling ; News ; Sampling ; System effectiveness</subject><ispartof>User modeling and user-adapted interaction, 2025-03, Vol.35 (1), p.2, Article 2</ispartof><rights>Copyright Springer Nature B.V. Mar 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c156t-9533748fd5460f76d2251cd21ce7d934513db0cfb7940e07cb2ced31554fb4793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhou, Xingran</creatorcontrib><creatorcontrib>Lin, Nankai</creatorcontrib><creatorcontrib>Zheng, Weixiong</creatorcontrib><creatorcontrib>Zhou, Dong</creatorcontrib><creatorcontrib>Yang, Aimin</creatorcontrib><title>A contrastive news recommendation framework based on curriculum learning</title><title>User modeling and user-adapted interaction</title><description>News recommendation is an intelligent technology that aims to provide users with matching news content based on their preferences and interests. Nevertheless, current methodologies exhibit significant limitations. Traditional models often rely on simple random negative sampling for training, an approach that insufficiently captures the patterns and preferences of users’ clicking behavior, thereby undermining the model’s effectiveness. Furthermore, these systems often face challenges in insufficient modeling due to the limited nature of user interactions. Considering these challenges, this paper presents a contrastive news recommendation framework based on curriculum learning (CNRCL). Specifically, we relate the negative sampling process to users’ interests and employ curriculum learning to guide the negative sampling procedure. To address the issue of insufficient user interest modeling, we propose to use contrastive learning to bring the user closer to news that is similar to the candidate news, thus enhancing the model’s accuracy in predicting user interests, and compensating for limited click behavior. Extensive experimental results on the MIND dataset verify the effectiveness of the model and improve the performance of news recommendation. Our code can be obtained from https://github.com/IIP-Lab-2024/CNRCL.</description><subject>Curricula</subject><subject>Learning</subject><subject>Modelling</subject><subject>News</subject><subject>Sampling</subject><subject>System effectiveness</subject><issn>0924-1868</issn><issn>1573-1391</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNotkMtKAzEUhoMoWKsv4GrAdfScXCbNshS1QsGNrkMmF5naydRkxuLbO7aufvgv58BHyC3CPQKoh4LIpKLABAUtGKNwRmYoFafINZ6TGegpwkW9uCRXpWxhGtVKz8h6Wbk-DdmWof0OVQqHUuXg-q4Lyduh7VMVs-3Coc-fVWNL8NVkuTHn1o27sat2webUpo9rchHtroSbf52T96fHt9Wabl6fX1bLDXUo64FqybkSi-ilqCGq2jMm0XmGLiivuZDIfQMuNkoLCKBcw1zwHKUUsRFK8zm5O93d5_5rDGUw237MaXppOAqttFQgpxY7tVzuS8khmn1uO5t_DIL5I2ZOxMxEzByJGeC_tvJefQ</recordid><startdate>202503</startdate><enddate>202503</enddate><creator>Zhou, Xingran</creator><creator>Lin, Nankai</creator><creator>Zheng, Weixiong</creator><creator>Zhou, Dong</creator><creator>Yang, Aimin</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>202503</creationdate><title>A contrastive news recommendation framework based on curriculum learning</title><author>Zhou, Xingran ; Lin, Nankai ; Zheng, Weixiong ; Zhou, Dong ; Yang, Aimin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c156t-9533748fd5460f76d2251cd21ce7d934513db0cfb7940e07cb2ced31554fb4793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Curricula</topic><topic>Learning</topic><topic>Modelling</topic><topic>News</topic><topic>Sampling</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Xingran</creatorcontrib><creatorcontrib>Lin, Nankai</creatorcontrib><creatorcontrib>Zheng, Weixiong</creatorcontrib><creatorcontrib>Zhou, Dong</creatorcontrib><creatorcontrib>Yang, Aimin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>User modeling and user-adapted interaction</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Xingran</au><au>Lin, Nankai</au><au>Zheng, Weixiong</au><au>Zhou, Dong</au><au>Yang, Aimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A contrastive news recommendation framework based on curriculum learning</atitle><jtitle>User modeling and user-adapted interaction</jtitle><date>2025-03</date><risdate>2025</risdate><volume>35</volume><issue>1</issue><spage>2</spage><pages>2-</pages><artnum>2</artnum><issn>0924-1868</issn><eissn>1573-1391</eissn><abstract>News recommendation is an intelligent technology that aims to provide users with matching news content based on their preferences and interests. Nevertheless, current methodologies exhibit significant limitations. Traditional models often rely on simple random negative sampling for training, an approach that insufficiently captures the patterns and preferences of users’ clicking behavior, thereby undermining the model’s effectiveness. Furthermore, these systems often face challenges in insufficient modeling due to the limited nature of user interactions. Considering these challenges, this paper presents a contrastive news recommendation framework based on curriculum learning (CNRCL). Specifically, we relate the negative sampling process to users’ interests and employ curriculum learning to guide the negative sampling procedure. To address the issue of insufficient user interest modeling, we propose to use contrastive learning to bring the user closer to news that is similar to the candidate news, thus enhancing the model’s accuracy in predicting user interests, and compensating for limited click behavior. Extensive experimental results on the MIND dataset verify the effectiveness of the model and improve the performance of news recommendation. Our code can be obtained from https://github.com/IIP-Lab-2024/CNRCL.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11257-024-09422-0</doi></addata></record>
fulltext fulltext
identifier ISSN: 0924-1868
ispartof User modeling and user-adapted interaction, 2025-03, Vol.35 (1), p.2, Article 2
issn 0924-1868
1573-1391
language eng
recordid cdi_proquest_journals_3149795705
source SpringerLink Journals - AutoHoldings
subjects Curricula
Learning
Modelling
News
Sampling
System effectiveness
title A contrastive news recommendation framework based on curriculum learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A17%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20contrastive%20news%20recommendation%20framework%20based%20on%20curriculum%20learning&rft.jtitle=User%20modeling%20and%20user-adapted%20interaction&rft.au=Zhou,%20Xingran&rft.date=2025-03&rft.volume=35&rft.issue=1&rft.spage=2&rft.pages=2-&rft.artnum=2&rft.issn=0924-1868&rft.eissn=1573-1391&rft_id=info:doi/10.1007/s11257-024-09422-0&rft_dat=%3Cproquest_cross%3E3149795705%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149795705&rft_id=info:pmid/&rfr_iscdi=true