Maximum Entropy Method for Wind Farm Site Selection: Implications for River Basin Ecosystems Under Climate Change

As the global shift from fossil fuels to the Paris Agreement has accelerated, wind energy has become a key alternative to hydroelectric power. However, existing research often needs to improve in integrating diverse environmental, economic, and climate-related variables when modeling wind energy pot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2024-12, Vol.16 (24), p.3679
Hauptverfasser: Unal, Muge, Cilek, Ahmet, Tekin, Senem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 3679
container_title Water (Basel)
container_volume 16
creator Unal, Muge
Cilek, Ahmet
Tekin, Senem
description As the global shift from fossil fuels to the Paris Agreement has accelerated, wind energy has become a key alternative to hydroelectric power. However, existing research often needs to improve in integrating diverse environmental, economic, and climate-related variables when modeling wind energy potential, particularly under future climate change scenarios. Addressing these gaps, this study employs the maximum entropy (MaxEnt) method, a robust and innovative tool for spatial modeling, to identify optimal wind farm sites in Türkiye. This research advances site selection methodologies and enhances predictive accuracy by leveraging a comprehensive dataset and incorporating climate change scenarios. The results indicate that 89% of the current licensed projects will maintain compliance in the future, while 8% will see a decrease in compliance. Furthermore, the wind energy potential in Türkiye is expected to increase because of climate change. These results confirm the suitability of existing project locations and identify new high-potential areas for sustainable wind energy development. This study provides policymakers, investors, and developers actionable insights to optimize wind energy integration into the national energy portfolio, supporting global climate goals by accelerating the adoption of renewable energy sources.
doi_str_mv 10.3390/w16243679
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3149768095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149768095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c625-ac090d8bdf3e1da3d99fd1ec29e071b5c6e895240105417d698a7be7b5b4d7fb3</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOOYe_AYBn3yoJk3aNL7p2HSwIbiJjyVNbl1G23RJp-7b2zkR78v9w49zLgehS0puGJPk9pOmMWepkCdoEBPBIs45Pf03n6NRCBvSF5dZlpAB2i7Ul613NZ40nXftHi-gWzuDS-fxm20Mnipf46XtAC-hAt1Z19zhWd1WVqvDEn7QF_sBHj-oYBs80S7sQwd1wK-N6c_jytaqFxivVfMOF-isVFWA0W8fotV0sho_RfPnx9n4fh7pNE4ipYkkJitMyYAaxYyUpaGgYwlE0CLRKWQyiTmhJOFUmFRmShQgiqTgRpQFG6Kro2zr3XYHocs3bueb3jFnlEuRZkQmPXV9pLR3IXgo89b3z_p9Tkl-yDT_y5R9A_4zaT4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149768095</pqid></control><display><type>article</type><title>Maximum Entropy Method for Wind Farm Site Selection: Implications for River Basin Ecosystems Under Climate Change</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Unal, Muge ; Cilek, Ahmet ; Tekin, Senem</creator><creatorcontrib>Unal, Muge ; Cilek, Ahmet ; Tekin, Senem</creatorcontrib><description>As the global shift from fossil fuels to the Paris Agreement has accelerated, wind energy has become a key alternative to hydroelectric power. However, existing research often needs to improve in integrating diverse environmental, economic, and climate-related variables when modeling wind energy potential, particularly under future climate change scenarios. Addressing these gaps, this study employs the maximum entropy (MaxEnt) method, a robust and innovative tool for spatial modeling, to identify optimal wind farm sites in Türkiye. This research advances site selection methodologies and enhances predictive accuracy by leveraging a comprehensive dataset and incorporating climate change scenarios. The results indicate that 89% of the current licensed projects will maintain compliance in the future, while 8% will see a decrease in compliance. Furthermore, the wind energy potential in Türkiye is expected to increase because of climate change. These results confirm the suitability of existing project locations and identify new high-potential areas for sustainable wind energy development. This study provides policymakers, investors, and developers actionable insights to optimize wind energy integration into the national energy portfolio, supporting global climate goals by accelerating the adoption of renewable energy sources.</description><identifier>ISSN: 2073-4441</identifier><identifier>EISSN: 2073-4441</identifier><identifier>DOI: 10.3390/w16243679</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alternative energy sources ; Aquatic ecosystems ; Carbon ; Climate change ; Community ; Decision making ; Electricity generation ; Emissions ; Energy consumption ; Energy industry ; Energy resources ; Environmental impact ; Fossil fuels ; Geographic information systems ; Greenhouse gases ; Hydrology ; Industrial plant emissions ; Land use ; Maximum entropy method ; Renewable resources ; Soil erosion ; Vegetation ; Water resources ; Watershed management ; Wind farms</subject><ispartof>Water (Basel), 2024-12, Vol.16 (24), p.3679</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c625-ac090d8bdf3e1da3d99fd1ec29e071b5c6e895240105417d698a7be7b5b4d7fb3</cites><orcidid>0000-0002-6781-2658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Unal, Muge</creatorcontrib><creatorcontrib>Cilek, Ahmet</creatorcontrib><creatorcontrib>Tekin, Senem</creatorcontrib><title>Maximum Entropy Method for Wind Farm Site Selection: Implications for River Basin Ecosystems Under Climate Change</title><title>Water (Basel)</title><description>As the global shift from fossil fuels to the Paris Agreement has accelerated, wind energy has become a key alternative to hydroelectric power. However, existing research often needs to improve in integrating diverse environmental, economic, and climate-related variables when modeling wind energy potential, particularly under future climate change scenarios. Addressing these gaps, this study employs the maximum entropy (MaxEnt) method, a robust and innovative tool for spatial modeling, to identify optimal wind farm sites in Türkiye. This research advances site selection methodologies and enhances predictive accuracy by leveraging a comprehensive dataset and incorporating climate change scenarios. The results indicate that 89% of the current licensed projects will maintain compliance in the future, while 8% will see a decrease in compliance. Furthermore, the wind energy potential in Türkiye is expected to increase because of climate change. These results confirm the suitability of existing project locations and identify new high-potential areas for sustainable wind energy development. This study provides policymakers, investors, and developers actionable insights to optimize wind energy integration into the national energy portfolio, supporting global climate goals by accelerating the adoption of renewable energy sources.</description><subject>Alternative energy sources</subject><subject>Aquatic ecosystems</subject><subject>Carbon</subject><subject>Climate change</subject><subject>Community</subject><subject>Decision making</subject><subject>Electricity generation</subject><subject>Emissions</subject><subject>Energy consumption</subject><subject>Energy industry</subject><subject>Energy resources</subject><subject>Environmental impact</subject><subject>Fossil fuels</subject><subject>Geographic information systems</subject><subject>Greenhouse gases</subject><subject>Hydrology</subject><subject>Industrial plant emissions</subject><subject>Land use</subject><subject>Maximum entropy method</subject><subject>Renewable resources</subject><subject>Soil erosion</subject><subject>Vegetation</subject><subject>Water resources</subject><subject>Watershed management</subject><subject>Wind farms</subject><issn>2073-4441</issn><issn>2073-4441</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkF9LwzAUxYMoOOYe_AYBn3yoJk3aNL7p2HSwIbiJjyVNbl1G23RJp-7b2zkR78v9w49zLgehS0puGJPk9pOmMWepkCdoEBPBIs45Pf03n6NRCBvSF5dZlpAB2i7Ul613NZ40nXftHi-gWzuDS-fxm20Mnipf46XtAC-hAt1Z19zhWd1WVqvDEn7QF_sBHj-oYBs80S7sQwd1wK-N6c_jytaqFxivVfMOF-isVFWA0W8fotV0sho_RfPnx9n4fh7pNE4ipYkkJitMyYAaxYyUpaGgYwlE0CLRKWQyiTmhJOFUmFRmShQgiqTgRpQFG6Kro2zr3XYHocs3bueb3jFnlEuRZkQmPXV9pLR3IXgo89b3z_p9Tkl-yDT_y5R9A_4zaT4</recordid><startdate>20241220</startdate><enddate>20241220</enddate><creator>Unal, Muge</creator><creator>Cilek, Ahmet</creator><creator>Tekin, Senem</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6781-2658</orcidid></search><sort><creationdate>20241220</creationdate><title>Maximum Entropy Method for Wind Farm Site Selection: Implications for River Basin Ecosystems Under Climate Change</title><author>Unal, Muge ; Cilek, Ahmet ; Tekin, Senem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c625-ac090d8bdf3e1da3d99fd1ec29e071b5c6e895240105417d698a7be7b5b4d7fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alternative energy sources</topic><topic>Aquatic ecosystems</topic><topic>Carbon</topic><topic>Climate change</topic><topic>Community</topic><topic>Decision making</topic><topic>Electricity generation</topic><topic>Emissions</topic><topic>Energy consumption</topic><topic>Energy industry</topic><topic>Energy resources</topic><topic>Environmental impact</topic><topic>Fossil fuels</topic><topic>Geographic information systems</topic><topic>Greenhouse gases</topic><topic>Hydrology</topic><topic>Industrial plant emissions</topic><topic>Land use</topic><topic>Maximum entropy method</topic><topic>Renewable resources</topic><topic>Soil erosion</topic><topic>Vegetation</topic><topic>Water resources</topic><topic>Watershed management</topic><topic>Wind farms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unal, Muge</creatorcontrib><creatorcontrib>Cilek, Ahmet</creatorcontrib><creatorcontrib>Tekin, Senem</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Water (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Unal, Muge</au><au>Cilek, Ahmet</au><au>Tekin, Senem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum Entropy Method for Wind Farm Site Selection: Implications for River Basin Ecosystems Under Climate Change</atitle><jtitle>Water (Basel)</jtitle><date>2024-12-20</date><risdate>2024</risdate><volume>16</volume><issue>24</issue><spage>3679</spage><pages>3679-</pages><issn>2073-4441</issn><eissn>2073-4441</eissn><abstract>As the global shift from fossil fuels to the Paris Agreement has accelerated, wind energy has become a key alternative to hydroelectric power. However, existing research often needs to improve in integrating diverse environmental, economic, and climate-related variables when modeling wind energy potential, particularly under future climate change scenarios. Addressing these gaps, this study employs the maximum entropy (MaxEnt) method, a robust and innovative tool for spatial modeling, to identify optimal wind farm sites in Türkiye. This research advances site selection methodologies and enhances predictive accuracy by leveraging a comprehensive dataset and incorporating climate change scenarios. The results indicate that 89% of the current licensed projects will maintain compliance in the future, while 8% will see a decrease in compliance. Furthermore, the wind energy potential in Türkiye is expected to increase because of climate change. These results confirm the suitability of existing project locations and identify new high-potential areas for sustainable wind energy development. This study provides policymakers, investors, and developers actionable insights to optimize wind energy integration into the national energy portfolio, supporting global climate goals by accelerating the adoption of renewable energy sources.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/w16243679</doi><orcidid>https://orcid.org/0000-0002-6781-2658</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4441
ispartof Water (Basel), 2024-12, Vol.16 (24), p.3679
issn 2073-4441
2073-4441
language eng
recordid cdi_proquest_journals_3149768095
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Alternative energy sources
Aquatic ecosystems
Carbon
Climate change
Community
Decision making
Electricity generation
Emissions
Energy consumption
Energy industry
Energy resources
Environmental impact
Fossil fuels
Geographic information systems
Greenhouse gases
Hydrology
Industrial plant emissions
Land use
Maximum entropy method
Renewable resources
Soil erosion
Vegetation
Water resources
Watershed management
Wind farms
title Maximum Entropy Method for Wind Farm Site Selection: Implications for River Basin Ecosystems Under Climate Change
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20Entropy%20Method%20for%20Wind%20Farm%20Site%20Selection:%20Implications%20for%20River%20Basin%20Ecosystems%20Under%20Climate%20Change&rft.jtitle=Water%20(Basel)&rft.au=Unal,%20Muge&rft.date=2024-12-20&rft.volume=16&rft.issue=24&rft.spage=3679&rft.pages=3679-&rft.issn=2073-4441&rft.eissn=2073-4441&rft_id=info:doi/10.3390/w16243679&rft_dat=%3Cproquest_cross%3E3149768095%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149768095&rft_id=info:pmid/&rfr_iscdi=true