Implementing the MOLS Table for n Up to 500

Latin squares are an essential tool in the construction of combinatorial designs. Optimal solutions for problems such as scheduling problems and permutation arrays for powerline communication rely on the ability to construct sets of mutually orthogonal Latin squares (MOLS) that are as large as possi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2024-12, Vol.16 (12), p.1678
Hauptverfasser: Miller, Alice, Abel, R. Julian R., Valkov, Ivaylo, Fraser, Douglas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 1678
container_title Symmetry (Basel)
container_volume 16
creator Miller, Alice
Abel, R. Julian R.
Valkov, Ivaylo
Fraser, Douglas
description Latin squares are an essential tool in the construction of combinatorial designs. Optimal solutions for problems such as scheduling problems and permutation arrays for powerline communication rely on the ability to construct sets of mutually orthogonal Latin squares (MOLS) that are as large as possible. Although constructions of suitable sets are known, they are scattered among a wide variety of sources, and can be both difficult to understand and contain errors. We describe our experience implementing the largest known sets of MOLS of order n, for n up to 500. We give a source for each construction, provide additional hints for the difficult cases, and correct some errors along the way. We also give constructions for new sets of MOLS of order n, where n is 486, 567, 622, 635, 754, 756, 764, 766, 774, 778, 802, 810, 822, 826, 894, 906, 916, 920 or 936.
doi_str_mv 10.3390/sym16121678
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3149760226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821984291</galeid><sourcerecordid>A821984291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c188t-d76dbcce8e19ad04cc9caaaf15fdb560a9dc65cde6872409c75d768c79764d173</originalsourceid><addsrcrecordid>eNpNkEtrAjEUhUNpoWJd9Q8EupSxSSbPpUgfgsVFdR1iHnZkZjJNxoX_vil20XsX93L5zrlwAHjEaFHXCj3nS4c5JpgLeQMmBIm6kkrR23_7PZjlfEKlGGKUowmYr7uh9Z3vx6Y_wvHLw4_t5hPuzKH1MMQEe7gf4BghQ-gB3AXTZj_7m1Owf33Zrd6rzfZtvVpuKoulHCsnuDtY66XHyjhErVXWGBMwC-7AODLKWc6s81wKQpGyghWJtEIJTh0W9RQ8XX2HFL_PPo_6FM-pLy91jWmhECG8UIsrdTSt100f4piMLe1819jY-9CU-1ISrCQlChfB_CqwKeacfNBDajqTLhoj_Zug_pdg_QPZ3mB_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149760226</pqid></control><display><type>article</type><title>Implementing the MOLS Table for n Up to 500</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Miller, Alice ; Abel, R. Julian R. ; Valkov, Ivaylo ; Fraser, Douglas</creator><creatorcontrib>Miller, Alice ; Abel, R. Julian R. ; Valkov, Ivaylo ; Fraser, Douglas</creatorcontrib><description>Latin squares are an essential tool in the construction of combinatorial designs. Optimal solutions for problems such as scheduling problems and permutation arrays for powerline communication rely on the ability to construct sets of mutually orthogonal Latin squares (MOLS) that are as large as possible. Although constructions of suitable sets are known, they are scattered among a wide variety of sources, and can be both difficult to understand and contain errors. We describe our experience implementing the largest known sets of MOLS of order n, for n up to 500. We give a source for each construction, provide additional hints for the difficult cases, and correct some errors along the way. We also give constructions for new sets of MOLS of order n, where n is 486, 567, 622, 635, 754, 756, 764, 766, 774, 778, 802, 810, 822, 826, 894, 906, 916, 920 or 936.</description><identifier>ISSN: 2073-8994</identifier><identifier>EISSN: 2073-8994</identifier><identifier>DOI: 10.3390/sym16121678</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Arrays ; Combinatorial analysis ; Design theory ; Errors ; Permutations</subject><ispartof>Symmetry (Basel), 2024-12, Vol.16 (12), p.1678</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c188t-d76dbcce8e19ad04cc9caaaf15fdb560a9dc65cde6872409c75d768c79764d173</cites><orcidid>0000-0002-0941-1717 ; 0000-0003-1116-875X ; 0009-0008-5291-6519 ; 0000-0002-3632-9612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Miller, Alice</creatorcontrib><creatorcontrib>Abel, R. Julian R.</creatorcontrib><creatorcontrib>Valkov, Ivaylo</creatorcontrib><creatorcontrib>Fraser, Douglas</creatorcontrib><title>Implementing the MOLS Table for n Up to 500</title><title>Symmetry (Basel)</title><description>Latin squares are an essential tool in the construction of combinatorial designs. Optimal solutions for problems such as scheduling problems and permutation arrays for powerline communication rely on the ability to construct sets of mutually orthogonal Latin squares (MOLS) that are as large as possible. Although constructions of suitable sets are known, they are scattered among a wide variety of sources, and can be both difficult to understand and contain errors. We describe our experience implementing the largest known sets of MOLS of order n, for n up to 500. We give a source for each construction, provide additional hints for the difficult cases, and correct some errors along the way. We also give constructions for new sets of MOLS of order n, where n is 486, 567, 622, 635, 754, 756, 764, 766, 774, 778, 802, 810, 822, 826, 894, 906, 916, 920 or 936.</description><subject>Arrays</subject><subject>Combinatorial analysis</subject><subject>Design theory</subject><subject>Errors</subject><subject>Permutations</subject><issn>2073-8994</issn><issn>2073-8994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkEtrAjEUhUNpoWJd9Q8EupSxSSbPpUgfgsVFdR1iHnZkZjJNxoX_vil20XsX93L5zrlwAHjEaFHXCj3nS4c5JpgLeQMmBIm6kkrR23_7PZjlfEKlGGKUowmYr7uh9Z3vx6Y_wvHLw4_t5hPuzKH1MMQEe7gf4BghQ-gB3AXTZj_7m1Owf33Zrd6rzfZtvVpuKoulHCsnuDtY66XHyjhErVXWGBMwC-7AODLKWc6s81wKQpGyghWJtEIJTh0W9RQ8XX2HFL_PPo_6FM-pLy91jWmhECG8UIsrdTSt100f4piMLe1819jY-9CU-1ISrCQlChfB_CqwKeacfNBDajqTLhoj_Zug_pdg_QPZ3mB_</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Miller, Alice</creator><creator>Abel, R. Julian R.</creator><creator>Valkov, Ivaylo</creator><creator>Fraser, Douglas</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-0941-1717</orcidid><orcidid>https://orcid.org/0000-0003-1116-875X</orcidid><orcidid>https://orcid.org/0009-0008-5291-6519</orcidid><orcidid>https://orcid.org/0000-0002-3632-9612</orcidid></search><sort><creationdate>20241201</creationdate><title>Implementing the MOLS Table for n Up to 500</title><author>Miller, Alice ; Abel, R. Julian R. ; Valkov, Ivaylo ; Fraser, Douglas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c188t-d76dbcce8e19ad04cc9caaaf15fdb560a9dc65cde6872409c75d768c79764d173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arrays</topic><topic>Combinatorial analysis</topic><topic>Design theory</topic><topic>Errors</topic><topic>Permutations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, Alice</creatorcontrib><creatorcontrib>Abel, R. Julian R.</creatorcontrib><creatorcontrib>Valkov, Ivaylo</creatorcontrib><creatorcontrib>Fraser, Douglas</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Symmetry (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, Alice</au><au>Abel, R. Julian R.</au><au>Valkov, Ivaylo</au><au>Fraser, Douglas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementing the MOLS Table for n Up to 500</atitle><jtitle>Symmetry (Basel)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>16</volume><issue>12</issue><spage>1678</spage><pages>1678-</pages><issn>2073-8994</issn><eissn>2073-8994</eissn><abstract>Latin squares are an essential tool in the construction of combinatorial designs. Optimal solutions for problems such as scheduling problems and permutation arrays for powerline communication rely on the ability to construct sets of mutually orthogonal Latin squares (MOLS) that are as large as possible. Although constructions of suitable sets are known, they are scattered among a wide variety of sources, and can be both difficult to understand and contain errors. We describe our experience implementing the largest known sets of MOLS of order n, for n up to 500. We give a source for each construction, provide additional hints for the difficult cases, and correct some errors along the way. We also give constructions for new sets of MOLS of order n, where n is 486, 567, 622, 635, 754, 756, 764, 766, 774, 778, 802, 810, 822, 826, 894, 906, 916, 920 or 936.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/sym16121678</doi><orcidid>https://orcid.org/0000-0002-0941-1717</orcidid><orcidid>https://orcid.org/0000-0003-1116-875X</orcidid><orcidid>https://orcid.org/0009-0008-5291-6519</orcidid><orcidid>https://orcid.org/0000-0002-3632-9612</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-8994
ispartof Symmetry (Basel), 2024-12, Vol.16 (12), p.1678
issn 2073-8994
2073-8994
language eng
recordid cdi_proquest_journals_3149760226
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Arrays
Combinatorial analysis
Design theory
Errors
Permutations
title Implementing the MOLS Table for n Up to 500
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A51%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementing%20the%20MOLS%20Table%20for%20n%20Up%20to%20500&rft.jtitle=Symmetry%20(Basel)&rft.au=Miller,%20Alice&rft.date=2024-12-01&rft.volume=16&rft.issue=12&rft.spage=1678&rft.pages=1678-&rft.issn=2073-8994&rft.eissn=2073-8994&rft_id=info:doi/10.3390/sym16121678&rft_dat=%3Cgale_proqu%3EA821984291%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149760226&rft_id=info:pmid/&rft_galeid=A821984291&rfr_iscdi=true