Path Planning for Unmanned Systems Based on Integrated Sampling Strategies and Improved PSO

B-splines and Particle Swarm Optimization algorithms are integrated for unmanned system path planning in mountainous terrains. In the early stages of the optimization search, the traditional Particle Swarm Optimization (PSO) algorithm achieves rapid convergence. However, as the process continues, it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2024-12, Vol.2891 (11), p.112015
Hauptverfasser: Gao, Wenjie, Wang, Qiang, Hu, Shengrong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 112015
container_title Journal of physics. Conference series
container_volume 2891
creator Gao, Wenjie
Wang, Qiang
Hu, Shengrong
description B-splines and Particle Swarm Optimization algorithms are integrated for unmanned system path planning in mountainous terrains. In the early stages of the optimization search, the traditional Particle Swarm Optimization (PSO) algorithm achieves rapid convergence. However, as the process continues, it often struggles with local optima in later stages. To address this limitation, this research proposes an improved PSO algorithm that combines the Immune Algorithm (IMA) and Latin Hypercube Sampling Method. This enhancement bolsters the optimization capabilities of particles at different phases of the search by implementing an evaluation mechanism and dynamic weight adjustments. Experimental results demonstrate that, when confronting optimization challenges within complex mountainous terrains, the improved PSO algorithm (SIPSO) which is combined with IMA and Sampling Method significantly outperforms conventional PSO and Genetic Algorithm (GA) in both iteration counts and computational efficiency, showcasing a notable advancement in performance.
doi_str_mv 10.1088/1742-6596/2891/11/112015
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_3149759235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149759235</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2085-8c85944848a93aad93df7a8389ebae3d0bd262780cb305e2d216c47561ee4af43</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKf_IeCl1OWzTS51-DEZrFB35UXImnR2rGltOmH_3oTJBBEMB5KT87znhRcAiNEtRkJMcMZIknKZToiQeIJjEYT5CRgdR6fHtxDn4ML7DUI0nGwE3nI9vMN8q52r3RpWbQ-XrgmdNbDY-8E2Ht5rH7rWwZkb7LrXQ5zppttGRTHEj3VtPdTOwFnT9e1nAPJicQnOKr319ur7HoPl48Pr9DmZL55m07t5UhIkeCJKwSVjggktqdZGUlNlWlAh7UpbatDKkJRkApUrirglhuC0ZBlPsbVMV4yOwfVhb7D-2Fk_qE27612wVBQzmXFJKA-UOFBl33rf20p1fd3ofq8wUjFKFTNSMS8Vo1Q4VowySG8O0rrtfna_5NPiF6k6UwWa_UH_a_IFQWqDIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149759235</pqid></control><display><type>article</type><title>Path Planning for Unmanned Systems Based on Integrated Sampling Strategies and Improved PSO</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Gao, Wenjie ; Wang, Qiang ; Hu, Shengrong</creator><creatorcontrib>Gao, Wenjie ; Wang, Qiang ; Hu, Shengrong</creatorcontrib><description>B-splines and Particle Swarm Optimization algorithms are integrated for unmanned system path planning in mountainous terrains. In the early stages of the optimization search, the traditional Particle Swarm Optimization (PSO) algorithm achieves rapid convergence. However, as the process continues, it often struggles with local optima in later stages. To address this limitation, this research proposes an improved PSO algorithm that combines the Immune Algorithm (IMA) and Latin Hypercube Sampling Method. This enhancement bolsters the optimization capabilities of particles at different phases of the search by implementing an evaluation mechanism and dynamic weight adjustments. Experimental results demonstrate that, when confronting optimization challenges within complex mountainous terrains, the improved PSO algorithm (SIPSO) which is combined with IMA and Sampling Method significantly outperforms conventional PSO and Genetic Algorithm (GA) in both iteration counts and computational efficiency, showcasing a notable advancement in performance.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/2891/11/112015</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Genetic algorithms ; Hypercubes ; Latin hypercube sampling ; Particle swarm optimization ; Path planning ; Sampling methods</subject><ispartof>Journal of physics. Conference series, 2024-12, Vol.2891 (11), p.112015</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>Published under licence by IOP Publishing Ltd. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2085-8c85944848a93aad93df7a8389ebae3d0bd262780cb305e2d216c47561ee4af43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/2891/11/112015/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27923,27924,38867,38889,53839,53866</link.rule.ids></links><search><creatorcontrib>Gao, Wenjie</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Hu, Shengrong</creatorcontrib><title>Path Planning for Unmanned Systems Based on Integrated Sampling Strategies and Improved PSO</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>B-splines and Particle Swarm Optimization algorithms are integrated for unmanned system path planning in mountainous terrains. In the early stages of the optimization search, the traditional Particle Swarm Optimization (PSO) algorithm achieves rapid convergence. However, as the process continues, it often struggles with local optima in later stages. To address this limitation, this research proposes an improved PSO algorithm that combines the Immune Algorithm (IMA) and Latin Hypercube Sampling Method. This enhancement bolsters the optimization capabilities of particles at different phases of the search by implementing an evaluation mechanism and dynamic weight adjustments. Experimental results demonstrate that, when confronting optimization challenges within complex mountainous terrains, the improved PSO algorithm (SIPSO) which is combined with IMA and Sampling Method significantly outperforms conventional PSO and Genetic Algorithm (GA) in both iteration counts and computational efficiency, showcasing a notable advancement in performance.</description><subject>Genetic algorithms</subject><subject>Hypercubes</subject><subject>Latin hypercube sampling</subject><subject>Particle swarm optimization</subject><subject>Path planning</subject><subject>Sampling methods</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkF1LwzAUhoMoOKf_IeCl1OWzTS51-DEZrFB35UXImnR2rGltOmH_3oTJBBEMB5KT87znhRcAiNEtRkJMcMZIknKZToiQeIJjEYT5CRgdR6fHtxDn4ML7DUI0nGwE3nI9vMN8q52r3RpWbQ-XrgmdNbDY-8E2Ht5rH7rWwZkb7LrXQ5zppttGRTHEj3VtPdTOwFnT9e1nAPJicQnOKr319ur7HoPl48Pr9DmZL55m07t5UhIkeCJKwSVjggktqdZGUlNlWlAh7UpbatDKkJRkApUrirglhuC0ZBlPsbVMV4yOwfVhb7D-2Fk_qE27612wVBQzmXFJKA-UOFBl33rf20p1fd3ofq8wUjFKFTNSMS8Vo1Q4VowySG8O0rrtfna_5NPiF6k6UwWa_UH_a_IFQWqDIg</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Gao, Wenjie</creator><creator>Wang, Qiang</creator><creator>Hu, Shengrong</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20241201</creationdate><title>Path Planning for Unmanned Systems Based on Integrated Sampling Strategies and Improved PSO</title><author>Gao, Wenjie ; Wang, Qiang ; Hu, Shengrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2085-8c85944848a93aad93df7a8389ebae3d0bd262780cb305e2d216c47561ee4af43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Genetic algorithms</topic><topic>Hypercubes</topic><topic>Latin hypercube sampling</topic><topic>Particle swarm optimization</topic><topic>Path planning</topic><topic>Sampling methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Wenjie</creatorcontrib><creatorcontrib>Wang, Qiang</creatorcontrib><creatorcontrib>Hu, Shengrong</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Wenjie</au><au>Wang, Qiang</au><au>Hu, Shengrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Path Planning for Unmanned Systems Based on Integrated Sampling Strategies and Improved PSO</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>2891</volume><issue>11</issue><spage>112015</spage><pages>112015-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>B-splines and Particle Swarm Optimization algorithms are integrated for unmanned system path planning in mountainous terrains. In the early stages of the optimization search, the traditional Particle Swarm Optimization (PSO) algorithm achieves rapid convergence. However, as the process continues, it often struggles with local optima in later stages. To address this limitation, this research proposes an improved PSO algorithm that combines the Immune Algorithm (IMA) and Latin Hypercube Sampling Method. This enhancement bolsters the optimization capabilities of particles at different phases of the search by implementing an evaluation mechanism and dynamic weight adjustments. Experimental results demonstrate that, when confronting optimization challenges within complex mountainous terrains, the improved PSO algorithm (SIPSO) which is combined with IMA and Sampling Method significantly outperforms conventional PSO and Genetic Algorithm (GA) in both iteration counts and computational efficiency, showcasing a notable advancement in performance.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/2891/11/112015</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2024-12, Vol.2891 (11), p.112015
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_3149759235
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Genetic algorithms
Hypercubes
Latin hypercube sampling
Particle swarm optimization
Path planning
Sampling methods
title Path Planning for Unmanned Systems Based on Integrated Sampling Strategies and Improved PSO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Path%20Planning%20for%20Unmanned%20Systems%20Based%20on%20Integrated%20Sampling%20Strategies%20and%20Improved%20PSO&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Gao,%20Wenjie&rft.date=2024-12-01&rft.volume=2891&rft.issue=11&rft.spage=112015&rft.pages=112015-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/2891/11/112015&rft_dat=%3Cproquest_iop_j%3E3149759235%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149759235&rft_id=info:pmid/&rfr_iscdi=true