Automated Dual-Side Leather Defect Detection and Classification Using YOLOv11: A Case Study in the Finished Leather Industry

This study explores the optimization of leather defect detection through the advanced YOLOv11 model, addressing long-standing challenges in quality control within the leather industry. Traditional inspection methods, reliant on human accuracy ranging between 70% and 85%, have limited leather utiliza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2024-12, Vol.12 (12), p.2892
Hauptverfasser: Banduka, Nikola, Tomić, Katarina, Živadinović, Jovan, Mladineo, Marko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!