Automated Dual-Side Leather Defect Detection and Classification Using YOLOv11: A Case Study in the Finished Leather Industry
This study explores the optimization of leather defect detection through the advanced YOLOv11 model, addressing long-standing challenges in quality control within the leather industry. Traditional inspection methods, reliant on human accuracy ranging between 70% and 85%, have limited leather utiliza...
Gespeichert in:
Veröffentlicht in: | Processes 2024-12, Vol.12 (12), p.2892 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!