Semantic image representation for image recognition and retrieval using multilayer variational auto-encoder, InceptionNet and low-level image features
This paper presents a novel image descriptor that enhances performance in image recognition and retrieval by combining deep learning and handcrafted features. Our method integrates high-level semantic features extracted via InceptionResNet-V2 with color and texture features to create a comprehensive...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2025, Vol.81 (1), Article 346 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | The Journal of supercomputing |
container_volume | 81 |
creator | Giveki, Davar Esfandyari, Sajad |
description | This paper presents a novel image descriptor that enhances performance in image recognition and retrieval by combining deep learning and handcrafted features. Our method integrates high-level semantic features extracted via InceptionResNet-V2 with color and texture features to create a comprehensive representation of image content. The descriptor’s effectiveness is demonstrated through extensive experiments across a range of image recognition and retrieval tasks. Our approach is tested on six benchmark datasets, including Corel-1 K, VS, OT, QT, SUN-397, and ILSVRC-2012 for single-label classification, and COCO and NUS-WIDE for multi-label classification, achieving high performances. The results establish that the proposed method is versatile and robust, excelling in single-label and multi-label recognition as well as image retrieval tasks, and outperforms several state-of-the-art methods. This work provides a significant advancement in image representation, with broad applicability in various computer vision domains. |
doi_str_mv | 10.1007/s11227-024-06792-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3149751128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149751128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-55dc832554492806fea2d3a944a88aa2601b333897b5909563f8e485bc85afc3</originalsourceid><addsrcrecordid>eNp9kMtOAjEYhRujiYi-gKtJ3Fr9pxemszTECwnRheybUv4hQ4YW2w6GF_F5LWB056ppz_lOTw4h1yXclQDVfSxLxioKTFAYVTWj8oQMSllxCkKJUzKAmgFVUrBzchHjCgAEr_iAfL3j2rjU2qJdmyUWATcBI7pkUutd0fjwK1i_dO3h1bhFvqfQ4tZ0RR9btyzWfZfazuwwFFsT2gOeRdMnT9FZv8BwW0ycxc1eecV0SOn8J-1wi93PLw2a1OcCl-SsMV3Eq59zSGZPj7PxC52-PU_GD1NqGUCiUi6s4kxKIWqmYJRxtuCmFsIoZQwbQTnnnKu6mssaajnijUKh5NwqaRrLh-TmGLsJ_qPHmPTK9yH3jpqXoq5knlVlFzu6bPAxBmz0JuS6YadL0Pv59XF-nefXh_m1zBA_QjGb3RLDX_Q_1DclzYsr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149751128</pqid></control><display><type>article</type><title>Semantic image representation for image recognition and retrieval using multilayer variational auto-encoder, InceptionNet and low-level image features</title><source>SpringerLink Journals</source><creator>Giveki, Davar ; Esfandyari, Sajad</creator><creatorcontrib>Giveki, Davar ; Esfandyari, Sajad</creatorcontrib><description>This paper presents a novel image descriptor that enhances performance in image recognition and retrieval by combining deep learning and handcrafted features. Our method integrates high-level semantic features extracted via InceptionResNet-V2 with color and texture features to create a comprehensive representation of image content. The descriptor’s effectiveness is demonstrated through extensive experiments across a range of image recognition and retrieval tasks. Our approach is tested on six benchmark datasets, including Corel-1 K, VS, OT, QT, SUN-397, and ILSVRC-2012 for single-label classification, and COCO and NUS-WIDE for multi-label classification, achieving high performances. The results establish that the proposed method is versatile and robust, excelling in single-label and multi-label recognition as well as image retrieval tasks, and outperforms several state-of-the-art methods. This work provides a significant advancement in image representation, with broad applicability in various computer vision domains.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-024-06792-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classification ; Compilers ; Computer Science ; Computer vision ; Feature extraction ; Interpreters ; Labels ; Machine learning ; Multilayers ; Processor Architectures ; Programming Languages ; Representations ; Retrieval ; Semantics ; Texture recognition</subject><ispartof>The Journal of supercomputing, 2025, Vol.81 (1), Article 346</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-55dc832554492806fea2d3a944a88aa2601b333897b5909563f8e485bc85afc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-024-06792-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-024-06792-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Giveki, Davar</creatorcontrib><creatorcontrib>Esfandyari, Sajad</creatorcontrib><title>Semantic image representation for image recognition and retrieval using multilayer variational auto-encoder, InceptionNet and low-level image features</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>This paper presents a novel image descriptor that enhances performance in image recognition and retrieval by combining deep learning and handcrafted features. Our method integrates high-level semantic features extracted via InceptionResNet-V2 with color and texture features to create a comprehensive representation of image content. The descriptor’s effectiveness is demonstrated through extensive experiments across a range of image recognition and retrieval tasks. Our approach is tested on six benchmark datasets, including Corel-1 K, VS, OT, QT, SUN-397, and ILSVRC-2012 for single-label classification, and COCO and NUS-WIDE for multi-label classification, achieving high performances. The results establish that the proposed method is versatile and robust, excelling in single-label and multi-label recognition as well as image retrieval tasks, and outperforms several state-of-the-art methods. This work provides a significant advancement in image representation, with broad applicability in various computer vision domains.</description><subject>Classification</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Feature extraction</subject><subject>Interpreters</subject><subject>Labels</subject><subject>Machine learning</subject><subject>Multilayers</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Representations</subject><subject>Retrieval</subject><subject>Semantics</subject><subject>Texture recognition</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAjEYhRujiYi-gKtJ3Fr9pxemszTECwnRheybUv4hQ4YW2w6GF_F5LWB056ppz_lOTw4h1yXclQDVfSxLxioKTFAYVTWj8oQMSllxCkKJUzKAmgFVUrBzchHjCgAEr_iAfL3j2rjU2qJdmyUWATcBI7pkUutd0fjwK1i_dO3h1bhFvqfQ4tZ0RR9btyzWfZfazuwwFFsT2gOeRdMnT9FZv8BwW0ycxc1eecV0SOn8J-1wi93PLw2a1OcCl-SsMV3Eq59zSGZPj7PxC52-PU_GD1NqGUCiUi6s4kxKIWqmYJRxtuCmFsIoZQwbQTnnnKu6mssaajnijUKh5NwqaRrLh-TmGLsJ_qPHmPTK9yH3jpqXoq5knlVlFzu6bPAxBmz0JuS6YadL0Pv59XF-nefXh_m1zBA_QjGb3RLDX_Q_1DclzYsr</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Giveki, Davar</creator><creator>Esfandyari, Sajad</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2025</creationdate><title>Semantic image representation for image recognition and retrieval using multilayer variational auto-encoder, InceptionNet and low-level image features</title><author>Giveki, Davar ; Esfandyari, Sajad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-55dc832554492806fea2d3a944a88aa2601b333897b5909563f8e485bc85afc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Classification</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Feature extraction</topic><topic>Interpreters</topic><topic>Labels</topic><topic>Machine learning</topic><topic>Multilayers</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Representations</topic><topic>Retrieval</topic><topic>Semantics</topic><topic>Texture recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giveki, Davar</creatorcontrib><creatorcontrib>Esfandyari, Sajad</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giveki, Davar</au><au>Esfandyari, Sajad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantic image representation for image recognition and retrieval using multilayer variational auto-encoder, InceptionNet and low-level image features</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2025</date><risdate>2025</risdate><volume>81</volume><issue>1</issue><artnum>346</artnum><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>This paper presents a novel image descriptor that enhances performance in image recognition and retrieval by combining deep learning and handcrafted features. Our method integrates high-level semantic features extracted via InceptionResNet-V2 with color and texture features to create a comprehensive representation of image content. The descriptor’s effectiveness is demonstrated through extensive experiments across a range of image recognition and retrieval tasks. Our approach is tested on six benchmark datasets, including Corel-1 K, VS, OT, QT, SUN-397, and ILSVRC-2012 for single-label classification, and COCO and NUS-WIDE for multi-label classification, achieving high performances. The results establish that the proposed method is versatile and robust, excelling in single-label and multi-label recognition as well as image retrieval tasks, and outperforms several state-of-the-art methods. This work provides a significant advancement in image representation, with broad applicability in various computer vision domains.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-024-06792-5</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2025, Vol.81 (1), Article 346 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_3149751128 |
source | SpringerLink Journals |
subjects | Classification Compilers Computer Science Computer vision Feature extraction Interpreters Labels Machine learning Multilayers Processor Architectures Programming Languages Representations Retrieval Semantics Texture recognition |
title | Semantic image representation for image recognition and retrieval using multilayer variational auto-encoder, InceptionNet and low-level image features |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantic%20image%20representation%20for%20image%20recognition%20and%20retrieval%20using%20multilayer%20variational%20auto-encoder,%20InceptionNet%20and%20low-level%20image%20features&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Giveki,%20Davar&rft.date=2025&rft.volume=81&rft.issue=1&rft.artnum=346&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-024-06792-5&rft_dat=%3Cproquest_cross%3E3149751128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149751128&rft_id=info:pmid/&rfr_iscdi=true |