Semantic image representation for image recognition and retrieval using multilayer variational auto-encoder, InceptionNet and low-level image features

This paper presents a novel image descriptor that enhances performance in image recognition and retrieval by combining deep learning and handcrafted features. Our method integrates high-level semantic features extracted via InceptionResNet-V2 with color and texture features to create a comprehensive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2025, Vol.81 (1), Article 346
Hauptverfasser: Giveki, Davar, Esfandyari, Sajad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The Journal of supercomputing
container_volume 81
creator Giveki, Davar
Esfandyari, Sajad
description This paper presents a novel image descriptor that enhances performance in image recognition and retrieval by combining deep learning and handcrafted features. Our method integrates high-level semantic features extracted via InceptionResNet-V2 with color and texture features to create a comprehensive representation of image content. The descriptor’s effectiveness is demonstrated through extensive experiments across a range of image recognition and retrieval tasks. Our approach is tested on six benchmark datasets, including Corel-1 K, VS, OT, QT, SUN-397, and ILSVRC-2012 for single-label classification, and COCO and NUS-WIDE for multi-label classification, achieving high performances. The results establish that the proposed method is versatile and robust, excelling in single-label and multi-label recognition as well as image retrieval tasks, and outperforms several state-of-the-art methods. This work provides a significant advancement in image representation, with broad applicability in various computer vision domains.
doi_str_mv 10.1007/s11227-024-06792-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3149751128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149751128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-55dc832554492806fea2d3a944a88aa2601b333897b5909563f8e485bc85afc3</originalsourceid><addsrcrecordid>eNp9kMtOAjEYhRujiYi-gKtJ3Fr9pxemszTECwnRheybUv4hQ4YW2w6GF_F5LWB056ppz_lOTw4h1yXclQDVfSxLxioKTFAYVTWj8oQMSllxCkKJUzKAmgFVUrBzchHjCgAEr_iAfL3j2rjU2qJdmyUWATcBI7pkUutd0fjwK1i_dO3h1bhFvqfQ4tZ0RR9btyzWfZfazuwwFFsT2gOeRdMnT9FZv8BwW0ycxc1eecV0SOn8J-1wi93PLw2a1OcCl-SsMV3Eq59zSGZPj7PxC52-PU_GD1NqGUCiUi6s4kxKIWqmYJRxtuCmFsIoZQwbQTnnnKu6mssaajnijUKh5NwqaRrLh-TmGLsJ_qPHmPTK9yH3jpqXoq5knlVlFzu6bPAxBmz0JuS6YadL0Pv59XF-nefXh_m1zBA_QjGb3RLDX_Q_1DclzYsr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149751128</pqid></control><display><type>article</type><title>Semantic image representation for image recognition and retrieval using multilayer variational auto-encoder, InceptionNet and low-level image features</title><source>SpringerLink Journals</source><creator>Giveki, Davar ; Esfandyari, Sajad</creator><creatorcontrib>Giveki, Davar ; Esfandyari, Sajad</creatorcontrib><description>This paper presents a novel image descriptor that enhances performance in image recognition and retrieval by combining deep learning and handcrafted features. Our method integrates high-level semantic features extracted via InceptionResNet-V2 with color and texture features to create a comprehensive representation of image content. The descriptor’s effectiveness is demonstrated through extensive experiments across a range of image recognition and retrieval tasks. Our approach is tested on six benchmark datasets, including Corel-1 K, VS, OT, QT, SUN-397, and ILSVRC-2012 for single-label classification, and COCO and NUS-WIDE for multi-label classification, achieving high performances. The results establish that the proposed method is versatile and robust, excelling in single-label and multi-label recognition as well as image retrieval tasks, and outperforms several state-of-the-art methods. This work provides a significant advancement in image representation, with broad applicability in various computer vision domains.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-024-06792-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classification ; Compilers ; Computer Science ; Computer vision ; Feature extraction ; Interpreters ; Labels ; Machine learning ; Multilayers ; Processor Architectures ; Programming Languages ; Representations ; Retrieval ; Semantics ; Texture recognition</subject><ispartof>The Journal of supercomputing, 2025, Vol.81 (1), Article 346</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-55dc832554492806fea2d3a944a88aa2601b333897b5909563f8e485bc85afc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-024-06792-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-024-06792-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Giveki, Davar</creatorcontrib><creatorcontrib>Esfandyari, Sajad</creatorcontrib><title>Semantic image representation for image recognition and retrieval using multilayer variational auto-encoder, InceptionNet and low-level image features</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>This paper presents a novel image descriptor that enhances performance in image recognition and retrieval by combining deep learning and handcrafted features. Our method integrates high-level semantic features extracted via InceptionResNet-V2 with color and texture features to create a comprehensive representation of image content. The descriptor’s effectiveness is demonstrated through extensive experiments across a range of image recognition and retrieval tasks. Our approach is tested on six benchmark datasets, including Corel-1 K, VS, OT, QT, SUN-397, and ILSVRC-2012 for single-label classification, and COCO and NUS-WIDE for multi-label classification, achieving high performances. The results establish that the proposed method is versatile and robust, excelling in single-label and multi-label recognition as well as image retrieval tasks, and outperforms several state-of-the-art methods. This work provides a significant advancement in image representation, with broad applicability in various computer vision domains.</description><subject>Classification</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Feature extraction</subject><subject>Interpreters</subject><subject>Labels</subject><subject>Machine learning</subject><subject>Multilayers</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Representations</subject><subject>Retrieval</subject><subject>Semantics</subject><subject>Texture recognition</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOAjEYhRujiYi-gKtJ3Fr9pxemszTECwnRheybUv4hQ4YW2w6GF_F5LWB056ppz_lOTw4h1yXclQDVfSxLxioKTFAYVTWj8oQMSllxCkKJUzKAmgFVUrBzchHjCgAEr_iAfL3j2rjU2qJdmyUWATcBI7pkUutd0fjwK1i_dO3h1bhFvqfQ4tZ0RR9btyzWfZfazuwwFFsT2gOeRdMnT9FZv8BwW0ycxc1eecV0SOn8J-1wi93PLw2a1OcCl-SsMV3Eq59zSGZPj7PxC52-PU_GD1NqGUCiUi6s4kxKIWqmYJRxtuCmFsIoZQwbQTnnnKu6mssaajnijUKh5NwqaRrLh-TmGLsJ_qPHmPTK9yH3jpqXoq5knlVlFzu6bPAxBmz0JuS6YadL0Pv59XF-nefXh_m1zBA_QjGb3RLDX_Q_1DclzYsr</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Giveki, Davar</creator><creator>Esfandyari, Sajad</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2025</creationdate><title>Semantic image representation for image recognition and retrieval using multilayer variational auto-encoder, InceptionNet and low-level image features</title><author>Giveki, Davar ; Esfandyari, Sajad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-55dc832554492806fea2d3a944a88aa2601b333897b5909563f8e485bc85afc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Classification</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Feature extraction</topic><topic>Interpreters</topic><topic>Labels</topic><topic>Machine learning</topic><topic>Multilayers</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Representations</topic><topic>Retrieval</topic><topic>Semantics</topic><topic>Texture recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giveki, Davar</creatorcontrib><creatorcontrib>Esfandyari, Sajad</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giveki, Davar</au><au>Esfandyari, Sajad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semantic image representation for image recognition and retrieval using multilayer variational auto-encoder, InceptionNet and low-level image features</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2025</date><risdate>2025</risdate><volume>81</volume><issue>1</issue><artnum>346</artnum><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>This paper presents a novel image descriptor that enhances performance in image recognition and retrieval by combining deep learning and handcrafted features. Our method integrates high-level semantic features extracted via InceptionResNet-V2 with color and texture features to create a comprehensive representation of image content. The descriptor’s effectiveness is demonstrated through extensive experiments across a range of image recognition and retrieval tasks. Our approach is tested on six benchmark datasets, including Corel-1 K, VS, OT, QT, SUN-397, and ILSVRC-2012 for single-label classification, and COCO and NUS-WIDE for multi-label classification, achieving high performances. The results establish that the proposed method is versatile and robust, excelling in single-label and multi-label recognition as well as image retrieval tasks, and outperforms several state-of-the-art methods. This work provides a significant advancement in image representation, with broad applicability in various computer vision domains.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-024-06792-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2025, Vol.81 (1), Article 346
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_3149751128
source SpringerLink Journals
subjects Classification
Compilers
Computer Science
Computer vision
Feature extraction
Interpreters
Labels
Machine learning
Multilayers
Processor Architectures
Programming Languages
Representations
Retrieval
Semantics
Texture recognition
title Semantic image representation for image recognition and retrieval using multilayer variational auto-encoder, InceptionNet and low-level image features
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A17%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semantic%20image%20representation%20for%20image%20recognition%20and%20retrieval%20using%20multilayer%20variational%20auto-encoder,%20InceptionNet%20and%20low-level%20image%20features&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Giveki,%20Davar&rft.date=2025&rft.volume=81&rft.issue=1&rft.artnum=346&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-024-06792-5&rft_dat=%3Cproquest_cross%3E3149751128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149751128&rft_id=info:pmid/&rfr_iscdi=true