Improving the Fracture Toughness of Boron Carbide via Minor Additions of SiC and TiB2 Through Hot-Press Sintering
Boron carbide (B4C) is an essential material in various high-performance applications due to its light weight and hardness. In this work, B4C-based composites were fabricated via a powder route consisting of powder mixing, precursor preparation, and hot-pressing under vacuum. The composites’ mechani...
Gespeichert in:
Veröffentlicht in: | Materials 2024-12, Vol.17 (24), p.6233 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 6233 |
container_title | Materials |
container_volume | 17 |
creator | Ka, Juhan Kim, Kyoung Hun Choi, Woohyuk Jung, Sungmo Lee, Tae Hwan Kim, Hyun Sik Lee, Heesoo Lee, Jae Hwa |
description | Boron carbide (B4C) is an essential material in various high-performance applications due to its light weight and hardness. In this work, B4C-based composites were fabricated via a powder route consisting of powder mixing, precursor preparation, and hot-pressing under vacuum. The composites’ mechanical properties and microstructure were analyzed to investigate the effect of adding minor second-phase particles. In addition to homogenizing the grain size, the addition of SiC (≤10 wt%) to B4C increased its strength and improved its fracture toughness, with values reaching 551 MPa and 3.22 MPa m1/2, respectively. Meanwhile, the addition of TiB2 (≤10 wt%) significantly improved the strength and fracture toughness only, with values reaching 548 MPa and 3.92 MPa m1/2, respectively, with only a minimal decrease in hardness. Microstructural analysis revealed that the second-phase particles were uniformly distributed and reduced the average grain size, contributing to the increase in strength. Additionally, the TiB2 particles impeded crack propagation and induced crack deflection at the interface, indicating the formation of an intergranular fracture mode. On the contrary, the addition of SiC primarily resulted in transgranular fracture behavior, though it still improved the toughness of the B4C. These results suggest that small amounts of SiC and TiB2 can effectively enhance the mechanical properties of B4C ceramics while maintaining the lightweight characteristics critical for military and aerospace applications. |
doi_str_mv | 10.3390/ma17246233 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3149705617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153870535</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-2aec7169c2fd5cb23ce20651206006228a51d85db51fac06fc2dbdd75ba8d0953</originalsourceid><addsrcrecordid>eNpdkU1LAzEQhoMoWGov_oKAFxFW87HZj2O7WFuoKHQ9L9kk26Z0kzbZLfjvzVpBcQ4zc3h45x1eAG4xeqQ0R08txymJE0LpBRjhPE8inMfx5Z_9Gky836FQlOKM5CNwXLYHZ0_abGC3VXDuuOh6p2Bp-83WKO-hbeDMOmtgwV2tpYInzeGrNtbBqZS609Z8Q2tdQG4kLPWMwHLrBgG4sF307gaZtTadcuHODbhq-N6ryc8cg4_5c1ksotXby7KYriJBcNpFhCuR4iQXpJFM1IQKRVDCcGgIJYRknGGZMVkz3HCBkkYQWUuZsppnEuWMjsH9WTf8d-yV76pWe6H2e26U7X1FMaNZihgd0Lt_6M72zgR3gYrzACU4DdTDmRLOeu9UUx2cbrn7rDCqhgCq3wDoF8yTdxI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149705617</pqid></control><display><type>article</type><title>Improving the Fracture Toughness of Boron Carbide via Minor Additions of SiC and TiB2 Through Hot-Press Sintering</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ka, Juhan ; Kim, Kyoung Hun ; Choi, Woohyuk ; Jung, Sungmo ; Lee, Tae Hwan ; Kim, Hyun Sik ; Lee, Heesoo ; Lee, Jae Hwa</creator><creatorcontrib>Ka, Juhan ; Kim, Kyoung Hun ; Choi, Woohyuk ; Jung, Sungmo ; Lee, Tae Hwan ; Kim, Hyun Sik ; Lee, Heesoo ; Lee, Jae Hwa</creatorcontrib><description>Boron carbide (B4C) is an essential material in various high-performance applications due to its light weight and hardness. In this work, B4C-based composites were fabricated via a powder route consisting of powder mixing, precursor preparation, and hot-pressing under vacuum. The composites’ mechanical properties and microstructure were analyzed to investigate the effect of adding minor second-phase particles. In addition to homogenizing the grain size, the addition of SiC (≤10 wt%) to B4C increased its strength and improved its fracture toughness, with values reaching 551 MPa and 3.22 MPa m1/2, respectively. Meanwhile, the addition of TiB2 (≤10 wt%) significantly improved the strength and fracture toughness only, with values reaching 548 MPa and 3.92 MPa m1/2, respectively, with only a minimal decrease in hardness. Microstructural analysis revealed that the second-phase particles were uniformly distributed and reduced the average grain size, contributing to the increase in strength. Additionally, the TiB2 particles impeded crack propagation and induced crack deflection at the interface, indicating the formation of an intergranular fracture mode. On the contrary, the addition of SiC primarily resulted in transgranular fracture behavior, though it still improved the toughness of the B4C. These results suggest that small amounts of SiC and TiB2 can effectively enhance the mechanical properties of B4C ceramics while maintaining the lightweight characteristics critical for military and aerospace applications.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17246233</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Additives ; Boron ; Boron carbide ; Ceramics ; Composite materials ; Energy consumption ; Fracture toughness ; Grain size distribution ; Hardness ; Hot pressing ; Intergranular fracture ; Mechanical properties ; Microstructural analysis ; Microstructure ; Military applications ; Propagation modes ; Silicon carbide ; Sintering ; Sintering (powder metallurgy) ; Temperature ; Titanium diboride ; Transgranular fracture ; Weight reduction</subject><ispartof>Materials, 2024-12, Vol.17 (24), p.6233</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-2aec7169c2fd5cb23ce20651206006228a51d85db51fac06fc2dbdd75ba8d0953</cites><orcidid>0009-0002-1426-494X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Ka, Juhan</creatorcontrib><creatorcontrib>Kim, Kyoung Hun</creatorcontrib><creatorcontrib>Choi, Woohyuk</creatorcontrib><creatorcontrib>Jung, Sungmo</creatorcontrib><creatorcontrib>Lee, Tae Hwan</creatorcontrib><creatorcontrib>Kim, Hyun Sik</creatorcontrib><creatorcontrib>Lee, Heesoo</creatorcontrib><creatorcontrib>Lee, Jae Hwa</creatorcontrib><title>Improving the Fracture Toughness of Boron Carbide via Minor Additions of SiC and TiB2 Through Hot-Press Sintering</title><title>Materials</title><description>Boron carbide (B4C) is an essential material in various high-performance applications due to its light weight and hardness. In this work, B4C-based composites were fabricated via a powder route consisting of powder mixing, precursor preparation, and hot-pressing under vacuum. The composites’ mechanical properties and microstructure were analyzed to investigate the effect of adding minor second-phase particles. In addition to homogenizing the grain size, the addition of SiC (≤10 wt%) to B4C increased its strength and improved its fracture toughness, with values reaching 551 MPa and 3.22 MPa m1/2, respectively. Meanwhile, the addition of TiB2 (≤10 wt%) significantly improved the strength and fracture toughness only, with values reaching 548 MPa and 3.92 MPa m1/2, respectively, with only a minimal decrease in hardness. Microstructural analysis revealed that the second-phase particles were uniformly distributed and reduced the average grain size, contributing to the increase in strength. Additionally, the TiB2 particles impeded crack propagation and induced crack deflection at the interface, indicating the formation of an intergranular fracture mode. On the contrary, the addition of SiC primarily resulted in transgranular fracture behavior, though it still improved the toughness of the B4C. These results suggest that small amounts of SiC and TiB2 can effectively enhance the mechanical properties of B4C ceramics while maintaining the lightweight characteristics critical for military and aerospace applications.</description><subject>Additives</subject><subject>Boron</subject><subject>Boron carbide</subject><subject>Ceramics</subject><subject>Composite materials</subject><subject>Energy consumption</subject><subject>Fracture toughness</subject><subject>Grain size distribution</subject><subject>Hardness</subject><subject>Hot pressing</subject><subject>Intergranular fracture</subject><subject>Mechanical properties</subject><subject>Microstructural analysis</subject><subject>Microstructure</subject><subject>Military applications</subject><subject>Propagation modes</subject><subject>Silicon carbide</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Temperature</subject><subject>Titanium diboride</subject><subject>Transgranular fracture</subject><subject>Weight reduction</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkU1LAzEQhoMoWGov_oKAFxFW87HZj2O7WFuoKHQ9L9kk26Z0kzbZLfjvzVpBcQ4zc3h45x1eAG4xeqQ0R08txymJE0LpBRjhPE8inMfx5Z_9Gky836FQlOKM5CNwXLYHZ0_abGC3VXDuuOh6p2Bp-83WKO-hbeDMOmtgwV2tpYInzeGrNtbBqZS609Z8Q2tdQG4kLPWMwHLrBgG4sF307gaZtTadcuHODbhq-N6ryc8cg4_5c1ksotXby7KYriJBcNpFhCuR4iQXpJFM1IQKRVDCcGgIJYRknGGZMVkz3HCBkkYQWUuZsppnEuWMjsH9WTf8d-yV76pWe6H2e26U7X1FMaNZihgd0Lt_6M72zgR3gYrzACU4DdTDmRLOeu9UUx2cbrn7rDCqhgCq3wDoF8yTdxI</recordid><startdate>20241220</startdate><enddate>20241220</enddate><creator>Ka, Juhan</creator><creator>Kim, Kyoung Hun</creator><creator>Choi, Woohyuk</creator><creator>Jung, Sungmo</creator><creator>Lee, Tae Hwan</creator><creator>Kim, Hyun Sik</creator><creator>Lee, Heesoo</creator><creator>Lee, Jae Hwa</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0002-1426-494X</orcidid></search><sort><creationdate>20241220</creationdate><title>Improving the Fracture Toughness of Boron Carbide via Minor Additions of SiC and TiB2 Through Hot-Press Sintering</title><author>Ka, Juhan ; Kim, Kyoung Hun ; Choi, Woohyuk ; Jung, Sungmo ; Lee, Tae Hwan ; Kim, Hyun Sik ; Lee, Heesoo ; Lee, Jae Hwa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-2aec7169c2fd5cb23ce20651206006228a51d85db51fac06fc2dbdd75ba8d0953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Additives</topic><topic>Boron</topic><topic>Boron carbide</topic><topic>Ceramics</topic><topic>Composite materials</topic><topic>Energy consumption</topic><topic>Fracture toughness</topic><topic>Grain size distribution</topic><topic>Hardness</topic><topic>Hot pressing</topic><topic>Intergranular fracture</topic><topic>Mechanical properties</topic><topic>Microstructural analysis</topic><topic>Microstructure</topic><topic>Military applications</topic><topic>Propagation modes</topic><topic>Silicon carbide</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Temperature</topic><topic>Titanium diboride</topic><topic>Transgranular fracture</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ka, Juhan</creatorcontrib><creatorcontrib>Kim, Kyoung Hun</creatorcontrib><creatorcontrib>Choi, Woohyuk</creatorcontrib><creatorcontrib>Jung, Sungmo</creatorcontrib><creatorcontrib>Lee, Tae Hwan</creatorcontrib><creatorcontrib>Kim, Hyun Sik</creatorcontrib><creatorcontrib>Lee, Heesoo</creatorcontrib><creatorcontrib>Lee, Jae Hwa</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ka, Juhan</au><au>Kim, Kyoung Hun</au><au>Choi, Woohyuk</au><au>Jung, Sungmo</au><au>Lee, Tae Hwan</au><au>Kim, Hyun Sik</au><au>Lee, Heesoo</au><au>Lee, Jae Hwa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving the Fracture Toughness of Boron Carbide via Minor Additions of SiC and TiB2 Through Hot-Press Sintering</atitle><jtitle>Materials</jtitle><date>2024-12-20</date><risdate>2024</risdate><volume>17</volume><issue>24</issue><spage>6233</spage><pages>6233-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Boron carbide (B4C) is an essential material in various high-performance applications due to its light weight and hardness. In this work, B4C-based composites were fabricated via a powder route consisting of powder mixing, precursor preparation, and hot-pressing under vacuum. The composites’ mechanical properties and microstructure were analyzed to investigate the effect of adding minor second-phase particles. In addition to homogenizing the grain size, the addition of SiC (≤10 wt%) to B4C increased its strength and improved its fracture toughness, with values reaching 551 MPa and 3.22 MPa m1/2, respectively. Meanwhile, the addition of TiB2 (≤10 wt%) significantly improved the strength and fracture toughness only, with values reaching 548 MPa and 3.92 MPa m1/2, respectively, with only a minimal decrease in hardness. Microstructural analysis revealed that the second-phase particles were uniformly distributed and reduced the average grain size, contributing to the increase in strength. Additionally, the TiB2 particles impeded crack propagation and induced crack deflection at the interface, indicating the formation of an intergranular fracture mode. On the contrary, the addition of SiC primarily resulted in transgranular fracture behavior, though it still improved the toughness of the B4C. These results suggest that small amounts of SiC and TiB2 can effectively enhance the mechanical properties of B4C ceramics while maintaining the lightweight characteristics critical for military and aerospace applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ma17246233</doi><orcidid>https://orcid.org/0009-0002-1426-494X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-12, Vol.17 (24), p.6233 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_journals_3149705617 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Additives Boron Boron carbide Ceramics Composite materials Energy consumption Fracture toughness Grain size distribution Hardness Hot pressing Intergranular fracture Mechanical properties Microstructural analysis Microstructure Military applications Propagation modes Silicon carbide Sintering Sintering (powder metallurgy) Temperature Titanium diboride Transgranular fracture Weight reduction |
title | Improving the Fracture Toughness of Boron Carbide via Minor Additions of SiC and TiB2 Through Hot-Press Sintering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20the%20Fracture%20Toughness%20of%20Boron%20Carbide%20via%20Minor%20Additions%20of%20SiC%20and%20TiB2%20Through%20Hot-Press%20Sintering&rft.jtitle=Materials&rft.au=Ka,%20Juhan&rft.date=2024-12-20&rft.volume=17&rft.issue=24&rft.spage=6233&rft.pages=6233-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17246233&rft_dat=%3Cproquest_cross%3E3153870535%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149705617&rft_id=info:pmid/&rfr_iscdi=true |