Three-Dimensionally Printed Bionic Hydroxyapatite (HAp) Ceramic Scaffolds with Different Structures and Porosities: Strength, Biocompatibility, and Biomedical Application Potential

Bionic bioceramic scaffolds are essential for achieving excellent implant properties and biocompatible behavior. In this study, inspired by the microstructure of natural bone, bionic hydroxyapatite (HAp) ceramic scaffolds with different structures (body-centered cubic (BCC), face-centered cubic (FCC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-12, Vol.17 (24), p.6092
Hauptverfasser: Zhang, Peng, Zhou, Qing, He, Rujie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page 6092
container_title Materials
container_volume 17
creator Zhang, Peng
Zhou, Qing
He, Rujie
description Bionic bioceramic scaffolds are essential for achieving excellent implant properties and biocompatible behavior. In this study, inspired by the microstructure of natural bone, bionic hydroxyapatite (HAp) ceramic scaffolds with different structures (body-centered cubic (BCC), face-centered cubic (FCC), and gyroid Triply Periodic Minimal Surfaces (TPMSs)) and porosities (80 vol.%, 60 vol.%, and 40 vol.%) were designed, 3D-printed, and characterized. The effects of structure and porosity on the morphology, mechanical properties, and in vitro biocompatibility properties of the HAp scaffolds were studied and compared with each other. Interestingly, the HAp scaffold with a porosity of 80 vol.% and a TPMS structure had the best combination of compressive strength and in vitro biocompatibility, and demonstrated a great biomedical application potential for bone repair. We hope this study can provide a reference for the application and development of HAp scaffolds in the field of bone repair engineering.
doi_str_mv 10.3390/ma17246092
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3149705409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821913705</galeid><sourcerecordid>A821913705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-33813d00ed6dbb1ad0e9301da6eb30c74945a15541f8bc0381665768aba6b4a83</originalsourceid><addsrcrecordid>eNpdkctu1TAQhiMEolXphgdAltgU1BQ7di5mdzgFDlIlKrWsI8ee9Lhy4mA7grwXD8iEUy7CXng0883v0T9Z9pzRC84lfTMoVheiorJ4lB0zKaucSSEe_xMfZacx3lM8nLOmkE-zIy7rSlaSHWc_bvcBIL-0A4zR-lE5t5DrYMcEhrzDhNVkt5jgvy9qUskmIGe7zfSKbCGoAYs3WvW9dyaSbzbtyaXtewgwJnKTwqzTHCASNRpy7YOPNlmIb9cSjHdpf77-oP2wCnfW2bSc_2IxO4CxWjmymSaHQcJJUCKhsFXuWfakVy7C6cN7kn358P52u8uvPn_8tN1c5bqoZco5bxg3lIKpTNcxZShITplRFXSc6lpIUSpWloL1Tacp0lVV1lWjOlV1QjX8JDs76E7Bf50hpnawUYNzagQ_x5azkjc146JG9OV_6L2fA9q5UkLWtBRUInVxoO6Ug9aOvU9BabwG0Es_Qm8xv2kKJhnHHmx4fWjQ6F4M0LdTsIMKS8tou-6__bt_hF88zDB36N8f9Pe2-U8BGKyn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149705409</pqid></control><display><type>article</type><title>Three-Dimensionally Printed Bionic Hydroxyapatite (HAp) Ceramic Scaffolds with Different Structures and Porosities: Strength, Biocompatibility, and Biomedical Application Potential</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Peng ; Zhou, Qing ; He, Rujie</creator><creatorcontrib>Zhang, Peng ; Zhou, Qing ; He, Rujie</creatorcontrib><description>Bionic bioceramic scaffolds are essential for achieving excellent implant properties and biocompatible behavior. In this study, inspired by the microstructure of natural bone, bionic hydroxyapatite (HAp) ceramic scaffolds with different structures (body-centered cubic (BCC), face-centered cubic (FCC), and gyroid Triply Periodic Minimal Surfaces (TPMSs)) and porosities (80 vol.%, 60 vol.%, and 40 vol.%) were designed, 3D-printed, and characterized. The effects of structure and porosity on the morphology, mechanical properties, and in vitro biocompatibility properties of the HAp scaffolds were studied and compared with each other. Interestingly, the HAp scaffold with a porosity of 80 vol.% and a TPMS structure had the best combination of compressive strength and in vitro biocompatibility, and demonstrated a great biomedical application potential for bone repair. We hope this study can provide a reference for the application and development of HAp scaffolds in the field of bone repair engineering.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17246092</identifier><identifier>PMID: 39769691</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; Bioceramics ; Biocompatibility ; Biomedical engineering ; Biomedical materials ; Bionics ; Body centered cubic lattice ; Bones ; Cell growth ; Compressive strength ; Design ; Face centered cubic lattice ; Hydroxyapatite ; Mechanical properties ; Minimal surfaces ; Morphology ; Physiology ; Pore size ; Porosity ; Scaffolds ; Skin &amp; tissue grafts ; Stress concentration ; Titanium alloys ; Transplants &amp; implants</subject><ispartof>Materials, 2024-12, Vol.17 (24), p.6092</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-33813d00ed6dbb1ad0e9301da6eb30c74945a15541f8bc0381665768aba6b4a83</cites><orcidid>0000-0003-2498-2363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39769691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Zhou, Qing</creatorcontrib><creatorcontrib>He, Rujie</creatorcontrib><title>Three-Dimensionally Printed Bionic Hydroxyapatite (HAp) Ceramic Scaffolds with Different Structures and Porosities: Strength, Biocompatibility, and Biomedical Application Potential</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Bionic bioceramic scaffolds are essential for achieving excellent implant properties and biocompatible behavior. In this study, inspired by the microstructure of natural bone, bionic hydroxyapatite (HAp) ceramic scaffolds with different structures (body-centered cubic (BCC), face-centered cubic (FCC), and gyroid Triply Periodic Minimal Surfaces (TPMSs)) and porosities (80 vol.%, 60 vol.%, and 40 vol.%) were designed, 3D-printed, and characterized. The effects of structure and porosity on the morphology, mechanical properties, and in vitro biocompatibility properties of the HAp scaffolds were studied and compared with each other. Interestingly, the HAp scaffold with a porosity of 80 vol.% and a TPMS structure had the best combination of compressive strength and in vitro biocompatibility, and demonstrated a great biomedical application potential for bone repair. We hope this study can provide a reference for the application and development of HAp scaffolds in the field of bone repair engineering.</description><subject>3-D printers</subject><subject>Bioceramics</subject><subject>Biocompatibility</subject><subject>Biomedical engineering</subject><subject>Biomedical materials</subject><subject>Bionics</subject><subject>Body centered cubic lattice</subject><subject>Bones</subject><subject>Cell growth</subject><subject>Compressive strength</subject><subject>Design</subject><subject>Face centered cubic lattice</subject><subject>Hydroxyapatite</subject><subject>Mechanical properties</subject><subject>Minimal surfaces</subject><subject>Morphology</subject><subject>Physiology</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Scaffolds</subject><subject>Skin &amp; tissue grafts</subject><subject>Stress concentration</subject><subject>Titanium alloys</subject><subject>Transplants &amp; implants</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkctu1TAQhiMEolXphgdAltgU1BQ7di5mdzgFDlIlKrWsI8ee9Lhy4mA7grwXD8iEUy7CXng0883v0T9Z9pzRC84lfTMoVheiorJ4lB0zKaucSSEe_xMfZacx3lM8nLOmkE-zIy7rSlaSHWc_bvcBIL-0A4zR-lE5t5DrYMcEhrzDhNVkt5jgvy9qUskmIGe7zfSKbCGoAYs3WvW9dyaSbzbtyaXtewgwJnKTwqzTHCASNRpy7YOPNlmIb9cSjHdpf77-oP2wCnfW2bSc_2IxO4CxWjmymSaHQcJJUCKhsFXuWfakVy7C6cN7kn358P52u8uvPn_8tN1c5bqoZco5bxg3lIKpTNcxZShITplRFXSc6lpIUSpWloL1Tacp0lVV1lWjOlV1QjX8JDs76E7Bf50hpnawUYNzagQ_x5azkjc146JG9OV_6L2fA9q5UkLWtBRUInVxoO6Ug9aOvU9BabwG0Es_Qm8xv2kKJhnHHmx4fWjQ6F4M0LdTsIMKS8tou-6__bt_hF88zDB36N8f9Pe2-U8BGKyn</recordid><startdate>20241213</startdate><enddate>20241213</enddate><creator>Zhang, Peng</creator><creator>Zhou, Qing</creator><creator>He, Rujie</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2498-2363</orcidid></search><sort><creationdate>20241213</creationdate><title>Three-Dimensionally Printed Bionic Hydroxyapatite (HAp) Ceramic Scaffolds with Different Structures and Porosities: Strength, Biocompatibility, and Biomedical Application Potential</title><author>Zhang, Peng ; Zhou, Qing ; He, Rujie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-33813d00ed6dbb1ad0e9301da6eb30c74945a15541f8bc0381665768aba6b4a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>Bioceramics</topic><topic>Biocompatibility</topic><topic>Biomedical engineering</topic><topic>Biomedical materials</topic><topic>Bionics</topic><topic>Body centered cubic lattice</topic><topic>Bones</topic><topic>Cell growth</topic><topic>Compressive strength</topic><topic>Design</topic><topic>Face centered cubic lattice</topic><topic>Hydroxyapatite</topic><topic>Mechanical properties</topic><topic>Minimal surfaces</topic><topic>Morphology</topic><topic>Physiology</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Scaffolds</topic><topic>Skin &amp; tissue grafts</topic><topic>Stress concentration</topic><topic>Titanium alloys</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Zhou, Qing</creatorcontrib><creatorcontrib>He, Rujie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Peng</au><au>Zhou, Qing</au><au>He, Rujie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensionally Printed Bionic Hydroxyapatite (HAp) Ceramic Scaffolds with Different Structures and Porosities: Strength, Biocompatibility, and Biomedical Application Potential</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-12-13</date><risdate>2024</risdate><volume>17</volume><issue>24</issue><spage>6092</spage><pages>6092-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Bionic bioceramic scaffolds are essential for achieving excellent implant properties and biocompatible behavior. In this study, inspired by the microstructure of natural bone, bionic hydroxyapatite (HAp) ceramic scaffolds with different structures (body-centered cubic (BCC), face-centered cubic (FCC), and gyroid Triply Periodic Minimal Surfaces (TPMSs)) and porosities (80 vol.%, 60 vol.%, and 40 vol.%) were designed, 3D-printed, and characterized. The effects of structure and porosity on the morphology, mechanical properties, and in vitro biocompatibility properties of the HAp scaffolds were studied and compared with each other. Interestingly, the HAp scaffold with a porosity of 80 vol.% and a TPMS structure had the best combination of compressive strength and in vitro biocompatibility, and demonstrated a great biomedical application potential for bone repair. We hope this study can provide a reference for the application and development of HAp scaffolds in the field of bone repair engineering.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39769691</pmid><doi>10.3390/ma17246092</doi><orcidid>https://orcid.org/0000-0003-2498-2363</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-12, Vol.17 (24), p.6092
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_journals_3149705409
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects 3-D printers
Bioceramics
Biocompatibility
Biomedical engineering
Biomedical materials
Bionics
Body centered cubic lattice
Bones
Cell growth
Compressive strength
Design
Face centered cubic lattice
Hydroxyapatite
Mechanical properties
Minimal surfaces
Morphology
Physiology
Pore size
Porosity
Scaffolds
Skin & tissue grafts
Stress concentration
Titanium alloys
Transplants & implants
title Three-Dimensionally Printed Bionic Hydroxyapatite (HAp) Ceramic Scaffolds with Different Structures and Porosities: Strength, Biocompatibility, and Biomedical Application Potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensionally%20Printed%20Bionic%20Hydroxyapatite%20(HAp)%20Ceramic%20Scaffolds%20with%20Different%20Structures%20and%20Porosities:%20Strength,%20Biocompatibility,%20and%20Biomedical%20Application%20Potential&rft.jtitle=Materials&rft.au=Zhang,%20Peng&rft.date=2024-12-13&rft.volume=17&rft.issue=24&rft.spage=6092&rft.pages=6092-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17246092&rft_dat=%3Cgale_proqu%3EA821913705%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149705409&rft_id=info:pmid/39769691&rft_galeid=A821913705&rfr_iscdi=true