Three-Dimensionally Printed Bionic Hydroxyapatite (HAp) Ceramic Scaffolds with Different Structures and Porosities: Strength, Biocompatibility, and Biomedical Application Potential
Bionic bioceramic scaffolds are essential for achieving excellent implant properties and biocompatible behavior. In this study, inspired by the microstructure of natural bone, bionic hydroxyapatite (HAp) ceramic scaffolds with different structures (body-centered cubic (BCC), face-centered cubic (FCC...
Gespeichert in:
Veröffentlicht in: | Materials 2024-12, Vol.17 (24), p.6092 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 6092 |
container_title | Materials |
container_volume | 17 |
creator | Zhang, Peng Zhou, Qing He, Rujie |
description | Bionic bioceramic scaffolds are essential for achieving excellent implant properties and biocompatible behavior. In this study, inspired by the microstructure of natural bone, bionic hydroxyapatite (HAp) ceramic scaffolds with different structures (body-centered cubic (BCC), face-centered cubic (FCC), and gyroid Triply Periodic Minimal Surfaces (TPMSs)) and porosities (80 vol.%, 60 vol.%, and 40 vol.%) were designed, 3D-printed, and characterized. The effects of structure and porosity on the morphology, mechanical properties, and in vitro biocompatibility properties of the HAp scaffolds were studied and compared with each other. Interestingly, the HAp scaffold with a porosity of 80 vol.% and a TPMS structure had the best combination of compressive strength and in vitro biocompatibility, and demonstrated a great biomedical application potential for bone repair. We hope this study can provide a reference for the application and development of HAp scaffolds in the field of bone repair engineering. |
doi_str_mv | 10.3390/ma17246092 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3149705409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821913705</galeid><sourcerecordid>A821913705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c279t-33813d00ed6dbb1ad0e9301da6eb30c74945a15541f8bc0381665768aba6b4a83</originalsourceid><addsrcrecordid>eNpdkctu1TAQhiMEolXphgdAltgU1BQ7di5mdzgFDlIlKrWsI8ee9Lhy4mA7grwXD8iEUy7CXng0883v0T9Z9pzRC84lfTMoVheiorJ4lB0zKaucSSEe_xMfZacx3lM8nLOmkE-zIy7rSlaSHWc_bvcBIL-0A4zR-lE5t5DrYMcEhrzDhNVkt5jgvy9qUskmIGe7zfSKbCGoAYs3WvW9dyaSbzbtyaXtewgwJnKTwqzTHCASNRpy7YOPNlmIb9cSjHdpf77-oP2wCnfW2bSc_2IxO4CxWjmymSaHQcJJUCKhsFXuWfakVy7C6cN7kn358P52u8uvPn_8tN1c5bqoZco5bxg3lIKpTNcxZShITplRFXSc6lpIUSpWloL1Tacp0lVV1lWjOlV1QjX8JDs76E7Bf50hpnawUYNzagQ_x5azkjc146JG9OV_6L2fA9q5UkLWtBRUInVxoO6Ug9aOvU9BabwG0Es_Qm8xv2kKJhnHHmx4fWjQ6F4M0LdTsIMKS8tou-6__bt_hF88zDB36N8f9Pe2-U8BGKyn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149705409</pqid></control><display><type>article</type><title>Three-Dimensionally Printed Bionic Hydroxyapatite (HAp) Ceramic Scaffolds with Different Structures and Porosities: Strength, Biocompatibility, and Biomedical Application Potential</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Peng ; Zhou, Qing ; He, Rujie</creator><creatorcontrib>Zhang, Peng ; Zhou, Qing ; He, Rujie</creatorcontrib><description>Bionic bioceramic scaffolds are essential for achieving excellent implant properties and biocompatible behavior. In this study, inspired by the microstructure of natural bone, bionic hydroxyapatite (HAp) ceramic scaffolds with different structures (body-centered cubic (BCC), face-centered cubic (FCC), and gyroid Triply Periodic Minimal Surfaces (TPMSs)) and porosities (80 vol.%, 60 vol.%, and 40 vol.%) were designed, 3D-printed, and characterized. The effects of structure and porosity on the morphology, mechanical properties, and in vitro biocompatibility properties of the HAp scaffolds were studied and compared with each other. Interestingly, the HAp scaffold with a porosity of 80 vol.% and a TPMS structure had the best combination of compressive strength and in vitro biocompatibility, and demonstrated a great biomedical application potential for bone repair. We hope this study can provide a reference for the application and development of HAp scaffolds in the field of bone repair engineering.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17246092</identifier><identifier>PMID: 39769691</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>3-D printers ; Bioceramics ; Biocompatibility ; Biomedical engineering ; Biomedical materials ; Bionics ; Body centered cubic lattice ; Bones ; Cell growth ; Compressive strength ; Design ; Face centered cubic lattice ; Hydroxyapatite ; Mechanical properties ; Minimal surfaces ; Morphology ; Physiology ; Pore size ; Porosity ; Scaffolds ; Skin & tissue grafts ; Stress concentration ; Titanium alloys ; Transplants & implants</subject><ispartof>Materials, 2024-12, Vol.17 (24), p.6092</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c279t-33813d00ed6dbb1ad0e9301da6eb30c74945a15541f8bc0381665768aba6b4a83</cites><orcidid>0000-0003-2498-2363</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39769691$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Zhou, Qing</creatorcontrib><creatorcontrib>He, Rujie</creatorcontrib><title>Three-Dimensionally Printed Bionic Hydroxyapatite (HAp) Ceramic Scaffolds with Different Structures and Porosities: Strength, Biocompatibility, and Biomedical Application Potential</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Bionic bioceramic scaffolds are essential for achieving excellent implant properties and biocompatible behavior. In this study, inspired by the microstructure of natural bone, bionic hydroxyapatite (HAp) ceramic scaffolds with different structures (body-centered cubic (BCC), face-centered cubic (FCC), and gyroid Triply Periodic Minimal Surfaces (TPMSs)) and porosities (80 vol.%, 60 vol.%, and 40 vol.%) were designed, 3D-printed, and characterized. The effects of structure and porosity on the morphology, mechanical properties, and in vitro biocompatibility properties of the HAp scaffolds were studied and compared with each other. Interestingly, the HAp scaffold with a porosity of 80 vol.% and a TPMS structure had the best combination of compressive strength and in vitro biocompatibility, and demonstrated a great biomedical application potential for bone repair. We hope this study can provide a reference for the application and development of HAp scaffolds in the field of bone repair engineering.</description><subject>3-D printers</subject><subject>Bioceramics</subject><subject>Biocompatibility</subject><subject>Biomedical engineering</subject><subject>Biomedical materials</subject><subject>Bionics</subject><subject>Body centered cubic lattice</subject><subject>Bones</subject><subject>Cell growth</subject><subject>Compressive strength</subject><subject>Design</subject><subject>Face centered cubic lattice</subject><subject>Hydroxyapatite</subject><subject>Mechanical properties</subject><subject>Minimal surfaces</subject><subject>Morphology</subject><subject>Physiology</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Scaffolds</subject><subject>Skin & tissue grafts</subject><subject>Stress concentration</subject><subject>Titanium alloys</subject><subject>Transplants & implants</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkctu1TAQhiMEolXphgdAltgU1BQ7di5mdzgFDlIlKrWsI8ee9Lhy4mA7grwXD8iEUy7CXng0883v0T9Z9pzRC84lfTMoVheiorJ4lB0zKaucSSEe_xMfZacx3lM8nLOmkE-zIy7rSlaSHWc_bvcBIL-0A4zR-lE5t5DrYMcEhrzDhNVkt5jgvy9qUskmIGe7zfSKbCGoAYs3WvW9dyaSbzbtyaXtewgwJnKTwqzTHCASNRpy7YOPNlmIb9cSjHdpf77-oP2wCnfW2bSc_2IxO4CxWjmymSaHQcJJUCKhsFXuWfakVy7C6cN7kn358P52u8uvPn_8tN1c5bqoZco5bxg3lIKpTNcxZShITplRFXSc6lpIUSpWloL1Tacp0lVV1lWjOlV1QjX8JDs76E7Bf50hpnawUYNzagQ_x5azkjc146JG9OV_6L2fA9q5UkLWtBRUInVxoO6Ug9aOvU9BabwG0Es_Qm8xv2kKJhnHHmx4fWjQ6F4M0LdTsIMKS8tou-6__bt_hF88zDB36N8f9Pe2-U8BGKyn</recordid><startdate>20241213</startdate><enddate>20241213</enddate><creator>Zhang, Peng</creator><creator>Zhou, Qing</creator><creator>He, Rujie</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2498-2363</orcidid></search><sort><creationdate>20241213</creationdate><title>Three-Dimensionally Printed Bionic Hydroxyapatite (HAp) Ceramic Scaffolds with Different Structures and Porosities: Strength, Biocompatibility, and Biomedical Application Potential</title><author>Zhang, Peng ; Zhou, Qing ; He, Rujie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c279t-33813d00ed6dbb1ad0e9301da6eb30c74945a15541f8bc0381665768aba6b4a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>Bioceramics</topic><topic>Biocompatibility</topic><topic>Biomedical engineering</topic><topic>Biomedical materials</topic><topic>Bionics</topic><topic>Body centered cubic lattice</topic><topic>Bones</topic><topic>Cell growth</topic><topic>Compressive strength</topic><topic>Design</topic><topic>Face centered cubic lattice</topic><topic>Hydroxyapatite</topic><topic>Mechanical properties</topic><topic>Minimal surfaces</topic><topic>Morphology</topic><topic>Physiology</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Scaffolds</topic><topic>Skin & tissue grafts</topic><topic>Stress concentration</topic><topic>Titanium alloys</topic><topic>Transplants & implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Zhou, Qing</creatorcontrib><creatorcontrib>He, Rujie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Peng</au><au>Zhou, Qing</au><au>He, Rujie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-Dimensionally Printed Bionic Hydroxyapatite (HAp) Ceramic Scaffolds with Different Structures and Porosities: Strength, Biocompatibility, and Biomedical Application Potential</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-12-13</date><risdate>2024</risdate><volume>17</volume><issue>24</issue><spage>6092</spage><pages>6092-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Bionic bioceramic scaffolds are essential for achieving excellent implant properties and biocompatible behavior. In this study, inspired by the microstructure of natural bone, bionic hydroxyapatite (HAp) ceramic scaffolds with different structures (body-centered cubic (BCC), face-centered cubic (FCC), and gyroid Triply Periodic Minimal Surfaces (TPMSs)) and porosities (80 vol.%, 60 vol.%, and 40 vol.%) were designed, 3D-printed, and characterized. The effects of structure and porosity on the morphology, mechanical properties, and in vitro biocompatibility properties of the HAp scaffolds were studied and compared with each other. Interestingly, the HAp scaffold with a porosity of 80 vol.% and a TPMS structure had the best combination of compressive strength and in vitro biocompatibility, and demonstrated a great biomedical application potential for bone repair. We hope this study can provide a reference for the application and development of HAp scaffolds in the field of bone repair engineering.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39769691</pmid><doi>10.3390/ma17246092</doi><orcidid>https://orcid.org/0000-0003-2498-2363</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-12, Vol.17 (24), p.6092 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_journals_3149705409 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 3-D printers Bioceramics Biocompatibility Biomedical engineering Biomedical materials Bionics Body centered cubic lattice Bones Cell growth Compressive strength Design Face centered cubic lattice Hydroxyapatite Mechanical properties Minimal surfaces Morphology Physiology Pore size Porosity Scaffolds Skin & tissue grafts Stress concentration Titanium alloys Transplants & implants |
title | Three-Dimensionally Printed Bionic Hydroxyapatite (HAp) Ceramic Scaffolds with Different Structures and Porosities: Strength, Biocompatibility, and Biomedical Application Potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T00%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-Dimensionally%20Printed%20Bionic%20Hydroxyapatite%20(HAp)%20Ceramic%20Scaffolds%20with%20Different%20Structures%20and%20Porosities:%20Strength,%20Biocompatibility,%20and%20Biomedical%20Application%20Potential&rft.jtitle=Materials&rft.au=Zhang,%20Peng&rft.date=2024-12-13&rft.volume=17&rft.issue=24&rft.spage=6092&rft.pages=6092-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17246092&rft_dat=%3Cgale_proqu%3EA821913705%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149705409&rft_id=info:pmid/39769691&rft_galeid=A821913705&rfr_iscdi=true |