The Effect of Oral Care Product Ingredients on Oral Pathogenic Bacteria Transcriptomics Through RNA-Seq

Various ingredients are utilized to inhibit the growth of harmful bacteria associated with cavities, gum disease, and bad breath. However, the precise mechanisms by which these ingredients affect the oral microbiome have not been fully understood at the molecular level. To elucidate the molecular me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microorganisms (Basel) 2024-12, Vol.12 (12), p.2668
Hauptverfasser: Hu, Ping, Xie, Sancai, Shi, Baochen, Tansky, Cheryl S, Circello, Benjamin, Sagel, Paul A, Schneiderman, Eva, Biesbrock, Aaron R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 2668
container_title Microorganisms (Basel)
container_volume 12
creator Hu, Ping
Xie, Sancai
Shi, Baochen
Tansky, Cheryl S
Circello, Benjamin
Sagel, Paul A
Schneiderman, Eva
Biesbrock, Aaron R
description Various ingredients are utilized to inhibit the growth of harmful bacteria associated with cavities, gum disease, and bad breath. However, the precise mechanisms by which these ingredients affect the oral microbiome have not been fully understood at the molecular level. To elucidate the molecular mechanisms, a high-throughput bacterial transcriptomics study was conducted, and the gene expression profiles of six common oral bacteria, including two Gram-positive bacteria (Actinomyces viscosus, Streptococcus mutans) and four Gram-negative bacteria (Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, and Prevotella pallens), were analyzed. The bacteria were exposed to nine common ingredients in toothpaste and mouthwash at different concentrations (stannous fluoride, stannous chloride, arginine bicarbonate, cetylpyridinium chloride, sodium monofluorophosphate, sodium fluoride, potassium nitrate, zinc phosphate, and hydrogen peroxide). Across 78 ingredient–microorganism pairs with 360 treatment–control combinations, significant and reproducible ingredient-based transcriptional response profiles were observed, providing valuable insights into the effects of these ingredients on the oral microbiome at the molecular level. This research shows that oral care product ingredients applied at biologically relevant concentrations manifest differential effects on the transcriptomics of bacterial genes in a variety of oral periodontal pathogenic bacteria. Stannous fluoride, stannous chloride, and cetylpyridinium chloride showed the most robust efficacy in inhibiting the growth or gene expression of various bacteria and pathogenic pathways. Combining multiple ingredients targeting different mechanisms might be more efficient than single ingredients in complex oral microbiomes.
doi_str_mv 10.3390/microorganisms12122668
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3149701355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ef2f801d6ef54f6bb046ac4893e30ed0</doaj_id><sourcerecordid>3149701355</sourcerecordid><originalsourceid>FETCH-LOGICAL-d945-2a938e14355c89d014e1b7a84239bceb622de4d5ac96973942dd4efdc2c2d1663</originalsourceid><addsrcrecordid>eNotkMtqwzAQRU2h0JDmF4qga7d6WbaWaegjEJrQem_G0shRSKxEshf9-5qmdzNwGQ6Hm2UPjD4JoenzyZsYQuyg9-mUGGecK1XdZDNOS5VzRcu7bJHSgU7RTFQFm2VdvUfy6hyagQRHthGOZAURyS4GO07luu8iWo_9kEjorw87GPahw94b8gJmwOiB1BH6ZKI_D2HySKTexzB2e_L1ucy_8XKf3To4Jlz833lWv73Wq498s31fr5ab3GpZ5By0qJBJURSm0pYyiawtoZJc6NZgqzi3KG0BRitdCi25tRKdNdxwy5QS82x9xdoAh-Yc_QniTxPAN3_FNE4DcfDmiA067irKrEJXSKfalkoFRlZaoKBo6cR6vLLOMVxGTENzCGPsJ_tGMKlLyiZN8QueanQd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149701355</pqid></control><display><type>article</type><title>The Effect of Oral Care Product Ingredients on Oral Pathogenic Bacteria Transcriptomics Through RNA-Seq</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Hu, Ping ; Xie, Sancai ; Shi, Baochen ; Tansky, Cheryl S ; Circello, Benjamin ; Sagel, Paul A ; Schneiderman, Eva ; Biesbrock, Aaron R</creator><creatorcontrib>Hu, Ping ; Xie, Sancai ; Shi, Baochen ; Tansky, Cheryl S ; Circello, Benjamin ; Sagel, Paul A ; Schneiderman, Eva ; Biesbrock, Aaron R</creatorcontrib><description>Various ingredients are utilized to inhibit the growth of harmful bacteria associated with cavities, gum disease, and bad breath. However, the precise mechanisms by which these ingredients affect the oral microbiome have not been fully understood at the molecular level. To elucidate the molecular mechanisms, a high-throughput bacterial transcriptomics study was conducted, and the gene expression profiles of six common oral bacteria, including two Gram-positive bacteria (Actinomyces viscosus, Streptococcus mutans) and four Gram-negative bacteria (Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, and Prevotella pallens), were analyzed. The bacteria were exposed to nine common ingredients in toothpaste and mouthwash at different concentrations (stannous fluoride, stannous chloride, arginine bicarbonate, cetylpyridinium chloride, sodium monofluorophosphate, sodium fluoride, potassium nitrate, zinc phosphate, and hydrogen peroxide). Across 78 ingredient–microorganism pairs with 360 treatment–control combinations, significant and reproducible ingredient-based transcriptional response profiles were observed, providing valuable insights into the effects of these ingredients on the oral microbiome at the molecular level. This research shows that oral care product ingredients applied at biologically relevant concentrations manifest differential effects on the transcriptomics of bacterial genes in a variety of oral periodontal pathogenic bacteria. Stannous fluoride, stannous chloride, and cetylpyridinium chloride showed the most robust efficacy in inhibiting the growth or gene expression of various bacteria and pathogenic pathways. Combining multiple ingredients targeting different mechanisms might be more efficient than single ingredients in complex oral microbiomes.</description><identifier>EISSN: 2076-2607</identifier><identifier>DOI: 10.3390/microorganisms12122668</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antimicrobial agents ; Bacteria ; Bacterial infections ; Bicarbonates ; Biofilms ; Biological effects ; Cetylpyridinium chloride ; Chlorides ; Fluoride treatments ; Fluorides ; Gene expression ; Gram-negative bacteria ; Gram-positive bacteria ; Gum disease ; Hydrogen peroxide ; Hypotheses ; Ingredients ; Microbiomes ; Molecular modelling ; oral care ; pathogen ; Pathogenesis ; Pathogens ; Potassium ; Potassium nitrate ; Prebiotics ; RNA-Seq ; Sodium ; Sodium fluoride ; Sodium fluorophosphate ; Stannous chloride ; Stannous fluoride ; Tin chloride ; Toothpaste ; Transcriptomics ; Virulence ; Zinc phosphate</subject><ispartof>Microorganisms (Basel), 2024-12, Vol.12 (12), p.2668</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Hu, Ping</creatorcontrib><creatorcontrib>Xie, Sancai</creatorcontrib><creatorcontrib>Shi, Baochen</creatorcontrib><creatorcontrib>Tansky, Cheryl S</creatorcontrib><creatorcontrib>Circello, Benjamin</creatorcontrib><creatorcontrib>Sagel, Paul A</creatorcontrib><creatorcontrib>Schneiderman, Eva</creatorcontrib><creatorcontrib>Biesbrock, Aaron R</creatorcontrib><title>The Effect of Oral Care Product Ingredients on Oral Pathogenic Bacteria Transcriptomics Through RNA-Seq</title><title>Microorganisms (Basel)</title><description>Various ingredients are utilized to inhibit the growth of harmful bacteria associated with cavities, gum disease, and bad breath. However, the precise mechanisms by which these ingredients affect the oral microbiome have not been fully understood at the molecular level. To elucidate the molecular mechanisms, a high-throughput bacterial transcriptomics study was conducted, and the gene expression profiles of six common oral bacteria, including two Gram-positive bacteria (Actinomyces viscosus, Streptococcus mutans) and four Gram-negative bacteria (Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, and Prevotella pallens), were analyzed. The bacteria were exposed to nine common ingredients in toothpaste and mouthwash at different concentrations (stannous fluoride, stannous chloride, arginine bicarbonate, cetylpyridinium chloride, sodium monofluorophosphate, sodium fluoride, potassium nitrate, zinc phosphate, and hydrogen peroxide). Across 78 ingredient–microorganism pairs with 360 treatment–control combinations, significant and reproducible ingredient-based transcriptional response profiles were observed, providing valuable insights into the effects of these ingredients on the oral microbiome at the molecular level. This research shows that oral care product ingredients applied at biologically relevant concentrations manifest differential effects on the transcriptomics of bacterial genes in a variety of oral periodontal pathogenic bacteria. Stannous fluoride, stannous chloride, and cetylpyridinium chloride showed the most robust efficacy in inhibiting the growth or gene expression of various bacteria and pathogenic pathways. Combining multiple ingredients targeting different mechanisms might be more efficient than single ingredients in complex oral microbiomes.</description><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>Bacterial infections</subject><subject>Bicarbonates</subject><subject>Biofilms</subject><subject>Biological effects</subject><subject>Cetylpyridinium chloride</subject><subject>Chlorides</subject><subject>Fluoride treatments</subject><subject>Fluorides</subject><subject>Gene expression</subject><subject>Gram-negative bacteria</subject><subject>Gram-positive bacteria</subject><subject>Gum disease</subject><subject>Hydrogen peroxide</subject><subject>Hypotheses</subject><subject>Ingredients</subject><subject>Microbiomes</subject><subject>Molecular modelling</subject><subject>oral care</subject><subject>pathogen</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>Potassium</subject><subject>Potassium nitrate</subject><subject>Prebiotics</subject><subject>RNA-Seq</subject><subject>Sodium</subject><subject>Sodium fluoride</subject><subject>Sodium fluorophosphate</subject><subject>Stannous chloride</subject><subject>Stannous fluoride</subject><subject>Tin chloride</subject><subject>Toothpaste</subject><subject>Transcriptomics</subject><subject>Virulence</subject><subject>Zinc phosphate</subject><issn>2076-2607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNotkMtqwzAQRU2h0JDmF4qga7d6WbaWaegjEJrQem_G0shRSKxEshf9-5qmdzNwGQ6Hm2UPjD4JoenzyZsYQuyg9-mUGGecK1XdZDNOS5VzRcu7bJHSgU7RTFQFm2VdvUfy6hyagQRHthGOZAURyS4GO07luu8iWo_9kEjorw87GPahw94b8gJmwOiB1BH6ZKI_D2HySKTexzB2e_L1ucy_8XKf3To4Jlz833lWv73Wq498s31fr5ab3GpZ5By0qJBJURSm0pYyiawtoZJc6NZgqzi3KG0BRitdCi25tRKdNdxwy5QS82x9xdoAh-Yc_QniTxPAN3_FNE4DcfDmiA067irKrEJXSKfalkoFRlZaoKBo6cR6vLLOMVxGTENzCGPsJ_tGMKlLyiZN8QueanQd</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Hu, Ping</creator><creator>Xie, Sancai</creator><creator>Shi, Baochen</creator><creator>Tansky, Cheryl S</creator><creator>Circello, Benjamin</creator><creator>Sagel, Paul A</creator><creator>Schneiderman, Eva</creator><creator>Biesbrock, Aaron R</creator><general>MDPI AG</general><scope>7T7</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope></search><sort><creationdate>20241201</creationdate><title>The Effect of Oral Care Product Ingredients on Oral Pathogenic Bacteria Transcriptomics Through RNA-Seq</title><author>Hu, Ping ; Xie, Sancai ; Shi, Baochen ; Tansky, Cheryl S ; Circello, Benjamin ; Sagel, Paul A ; Schneiderman, Eva ; Biesbrock, Aaron R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d945-2a938e14355c89d014e1b7a84239bceb622de4d5ac96973942dd4efdc2c2d1663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>Bacterial infections</topic><topic>Bicarbonates</topic><topic>Biofilms</topic><topic>Biological effects</topic><topic>Cetylpyridinium chloride</topic><topic>Chlorides</topic><topic>Fluoride treatments</topic><topic>Fluorides</topic><topic>Gene expression</topic><topic>Gram-negative bacteria</topic><topic>Gram-positive bacteria</topic><topic>Gum disease</topic><topic>Hydrogen peroxide</topic><topic>Hypotheses</topic><topic>Ingredients</topic><topic>Microbiomes</topic><topic>Molecular modelling</topic><topic>oral care</topic><topic>pathogen</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>Potassium</topic><topic>Potassium nitrate</topic><topic>Prebiotics</topic><topic>RNA-Seq</topic><topic>Sodium</topic><topic>Sodium fluoride</topic><topic>Sodium fluorophosphate</topic><topic>Stannous chloride</topic><topic>Stannous fluoride</topic><topic>Tin chloride</topic><topic>Toothpaste</topic><topic>Transcriptomics</topic><topic>Virulence</topic><topic>Zinc phosphate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Ping</creatorcontrib><creatorcontrib>Xie, Sancai</creatorcontrib><creatorcontrib>Shi, Baochen</creatorcontrib><creatorcontrib>Tansky, Cheryl S</creatorcontrib><creatorcontrib>Circello, Benjamin</creatorcontrib><creatorcontrib>Sagel, Paul A</creatorcontrib><creatorcontrib>Schneiderman, Eva</creatorcontrib><creatorcontrib>Biesbrock, Aaron R</creatorcontrib><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Microorganisms (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Ping</au><au>Xie, Sancai</au><au>Shi, Baochen</au><au>Tansky, Cheryl S</au><au>Circello, Benjamin</au><au>Sagel, Paul A</au><au>Schneiderman, Eva</au><au>Biesbrock, Aaron R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Oral Care Product Ingredients on Oral Pathogenic Bacteria Transcriptomics Through RNA-Seq</atitle><jtitle>Microorganisms (Basel)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>12</volume><issue>12</issue><spage>2668</spage><pages>2668-</pages><eissn>2076-2607</eissn><abstract>Various ingredients are utilized to inhibit the growth of harmful bacteria associated with cavities, gum disease, and bad breath. However, the precise mechanisms by which these ingredients affect the oral microbiome have not been fully understood at the molecular level. To elucidate the molecular mechanisms, a high-throughput bacterial transcriptomics study was conducted, and the gene expression profiles of six common oral bacteria, including two Gram-positive bacteria (Actinomyces viscosus, Streptococcus mutans) and four Gram-negative bacteria (Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, and Prevotella pallens), were analyzed. The bacteria were exposed to nine common ingredients in toothpaste and mouthwash at different concentrations (stannous fluoride, stannous chloride, arginine bicarbonate, cetylpyridinium chloride, sodium monofluorophosphate, sodium fluoride, potassium nitrate, zinc phosphate, and hydrogen peroxide). Across 78 ingredient–microorganism pairs with 360 treatment–control combinations, significant and reproducible ingredient-based transcriptional response profiles were observed, providing valuable insights into the effects of these ingredients on the oral microbiome at the molecular level. This research shows that oral care product ingredients applied at biologically relevant concentrations manifest differential effects on the transcriptomics of bacterial genes in a variety of oral periodontal pathogenic bacteria. Stannous fluoride, stannous chloride, and cetylpyridinium chloride showed the most robust efficacy in inhibiting the growth or gene expression of various bacteria and pathogenic pathways. Combining multiple ingredients targeting different mechanisms might be more efficient than single ingredients in complex oral microbiomes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/microorganisms12122668</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2076-2607
ispartof Microorganisms (Basel), 2024-12, Vol.12 (12), p.2668
issn 2076-2607
language eng
recordid cdi_proquest_journals_3149701355
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Antimicrobial agents
Bacteria
Bacterial infections
Bicarbonates
Biofilms
Biological effects
Cetylpyridinium chloride
Chlorides
Fluoride treatments
Fluorides
Gene expression
Gram-negative bacteria
Gram-positive bacteria
Gum disease
Hydrogen peroxide
Hypotheses
Ingredients
Microbiomes
Molecular modelling
oral care
pathogen
Pathogenesis
Pathogens
Potassium
Potassium nitrate
Prebiotics
RNA-Seq
Sodium
Sodium fluoride
Sodium fluorophosphate
Stannous chloride
Stannous fluoride
Tin chloride
Toothpaste
Transcriptomics
Virulence
Zinc phosphate
title The Effect of Oral Care Product Ingredients on Oral Pathogenic Bacteria Transcriptomics Through RNA-Seq
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A48%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Oral%20Care%20Product%20Ingredients%20on%20Oral%20Pathogenic%20Bacteria%20Transcriptomics%20Through%20RNA-Seq&rft.jtitle=Microorganisms%20(Basel)&rft.au=Hu,%20Ping&rft.date=2024-12-01&rft.volume=12&rft.issue=12&rft.spage=2668&rft.pages=2668-&rft.eissn=2076-2607&rft_id=info:doi/10.3390/microorganisms12122668&rft_dat=%3Cproquest_doaj_%3E3149701355%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149701355&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_ef2f801d6ef54f6bb046ac4893e30ed0&rfr_iscdi=true