The Effect of Oral Care Product Ingredients on Oral Pathogenic Bacteria Transcriptomics Through RNA-Seq
Various ingredients are utilized to inhibit the growth of harmful bacteria associated with cavities, gum disease, and bad breath. However, the precise mechanisms by which these ingredients affect the oral microbiome have not been fully understood at the molecular level. To elucidate the molecular me...
Gespeichert in:
Veröffentlicht in: | Microorganisms (Basel) 2024-12, Vol.12 (12), p.2668 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 2668 |
container_title | Microorganisms (Basel) |
container_volume | 12 |
creator | Hu, Ping Xie, Sancai Shi, Baochen Tansky, Cheryl S Circello, Benjamin Sagel, Paul A Schneiderman, Eva Biesbrock, Aaron R |
description | Various ingredients are utilized to inhibit the growth of harmful bacteria associated with cavities, gum disease, and bad breath. However, the precise mechanisms by which these ingredients affect the oral microbiome have not been fully understood at the molecular level. To elucidate the molecular mechanisms, a high-throughput bacterial transcriptomics study was conducted, and the gene expression profiles of six common oral bacteria, including two Gram-positive bacteria (Actinomyces viscosus, Streptococcus mutans) and four Gram-negative bacteria (Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, and Prevotella pallens), were analyzed. The bacteria were exposed to nine common ingredients in toothpaste and mouthwash at different concentrations (stannous fluoride, stannous chloride, arginine bicarbonate, cetylpyridinium chloride, sodium monofluorophosphate, sodium fluoride, potassium nitrate, zinc phosphate, and hydrogen peroxide). Across 78 ingredient–microorganism pairs with 360 treatment–control combinations, significant and reproducible ingredient-based transcriptional response profiles were observed, providing valuable insights into the effects of these ingredients on the oral microbiome at the molecular level. This research shows that oral care product ingredients applied at biologically relevant concentrations manifest differential effects on the transcriptomics of bacterial genes in a variety of oral periodontal pathogenic bacteria. Stannous fluoride, stannous chloride, and cetylpyridinium chloride showed the most robust efficacy in inhibiting the growth or gene expression of various bacteria and pathogenic pathways. Combining multiple ingredients targeting different mechanisms might be more efficient than single ingredients in complex oral microbiomes. |
doi_str_mv | 10.3390/microorganisms12122668 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3149701355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ef2f801d6ef54f6bb046ac4893e30ed0</doaj_id><sourcerecordid>3149701355</sourcerecordid><originalsourceid>FETCH-LOGICAL-d945-2a938e14355c89d014e1b7a84239bceb622de4d5ac96973942dd4efdc2c2d1663</originalsourceid><addsrcrecordid>eNotkMtqwzAQRU2h0JDmF4qga7d6WbaWaegjEJrQem_G0shRSKxEshf9-5qmdzNwGQ6Hm2UPjD4JoenzyZsYQuyg9-mUGGecK1XdZDNOS5VzRcu7bJHSgU7RTFQFm2VdvUfy6hyagQRHthGOZAURyS4GO07luu8iWo_9kEjorw87GPahw94b8gJmwOiB1BH6ZKI_D2HySKTexzB2e_L1ucy_8XKf3To4Jlz833lWv73Wq498s31fr5ab3GpZ5By0qJBJURSm0pYyiawtoZJc6NZgqzi3KG0BRitdCi25tRKdNdxwy5QS82x9xdoAh-Yc_QniTxPAN3_FNE4DcfDmiA067irKrEJXSKfalkoFRlZaoKBo6cR6vLLOMVxGTENzCGPsJ_tGMKlLyiZN8QueanQd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149701355</pqid></control><display><type>article</type><title>The Effect of Oral Care Product Ingredients on Oral Pathogenic Bacteria Transcriptomics Through RNA-Seq</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Hu, Ping ; Xie, Sancai ; Shi, Baochen ; Tansky, Cheryl S ; Circello, Benjamin ; Sagel, Paul A ; Schneiderman, Eva ; Biesbrock, Aaron R</creator><creatorcontrib>Hu, Ping ; Xie, Sancai ; Shi, Baochen ; Tansky, Cheryl S ; Circello, Benjamin ; Sagel, Paul A ; Schneiderman, Eva ; Biesbrock, Aaron R</creatorcontrib><description>Various ingredients are utilized to inhibit the growth of harmful bacteria associated with cavities, gum disease, and bad breath. However, the precise mechanisms by which these ingredients affect the oral microbiome have not been fully understood at the molecular level. To elucidate the molecular mechanisms, a high-throughput bacterial transcriptomics study was conducted, and the gene expression profiles of six common oral bacteria, including two Gram-positive bacteria (Actinomyces viscosus, Streptococcus mutans) and four Gram-negative bacteria (Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, and Prevotella pallens), were analyzed. The bacteria were exposed to nine common ingredients in toothpaste and mouthwash at different concentrations (stannous fluoride, stannous chloride, arginine bicarbonate, cetylpyridinium chloride, sodium monofluorophosphate, sodium fluoride, potassium nitrate, zinc phosphate, and hydrogen peroxide). Across 78 ingredient–microorganism pairs with 360 treatment–control combinations, significant and reproducible ingredient-based transcriptional response profiles were observed, providing valuable insights into the effects of these ingredients on the oral microbiome at the molecular level. This research shows that oral care product ingredients applied at biologically relevant concentrations manifest differential effects on the transcriptomics of bacterial genes in a variety of oral periodontal pathogenic bacteria. Stannous fluoride, stannous chloride, and cetylpyridinium chloride showed the most robust efficacy in inhibiting the growth or gene expression of various bacteria and pathogenic pathways. Combining multiple ingredients targeting different mechanisms might be more efficient than single ingredients in complex oral microbiomes.</description><identifier>EISSN: 2076-2607</identifier><identifier>DOI: 10.3390/microorganisms12122668</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antimicrobial agents ; Bacteria ; Bacterial infections ; Bicarbonates ; Biofilms ; Biological effects ; Cetylpyridinium chloride ; Chlorides ; Fluoride treatments ; Fluorides ; Gene expression ; Gram-negative bacteria ; Gram-positive bacteria ; Gum disease ; Hydrogen peroxide ; Hypotheses ; Ingredients ; Microbiomes ; Molecular modelling ; oral care ; pathogen ; Pathogenesis ; Pathogens ; Potassium ; Potassium nitrate ; Prebiotics ; RNA-Seq ; Sodium ; Sodium fluoride ; Sodium fluorophosphate ; Stannous chloride ; Stannous fluoride ; Tin chloride ; Toothpaste ; Transcriptomics ; Virulence ; Zinc phosphate</subject><ispartof>Microorganisms (Basel), 2024-12, Vol.12 (12), p.2668</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Hu, Ping</creatorcontrib><creatorcontrib>Xie, Sancai</creatorcontrib><creatorcontrib>Shi, Baochen</creatorcontrib><creatorcontrib>Tansky, Cheryl S</creatorcontrib><creatorcontrib>Circello, Benjamin</creatorcontrib><creatorcontrib>Sagel, Paul A</creatorcontrib><creatorcontrib>Schneiderman, Eva</creatorcontrib><creatorcontrib>Biesbrock, Aaron R</creatorcontrib><title>The Effect of Oral Care Product Ingredients on Oral Pathogenic Bacteria Transcriptomics Through RNA-Seq</title><title>Microorganisms (Basel)</title><description>Various ingredients are utilized to inhibit the growth of harmful bacteria associated with cavities, gum disease, and bad breath. However, the precise mechanisms by which these ingredients affect the oral microbiome have not been fully understood at the molecular level. To elucidate the molecular mechanisms, a high-throughput bacterial transcriptomics study was conducted, and the gene expression profiles of six common oral bacteria, including two Gram-positive bacteria (Actinomyces viscosus, Streptococcus mutans) and four Gram-negative bacteria (Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, and Prevotella pallens), were analyzed. The bacteria were exposed to nine common ingredients in toothpaste and mouthwash at different concentrations (stannous fluoride, stannous chloride, arginine bicarbonate, cetylpyridinium chloride, sodium monofluorophosphate, sodium fluoride, potassium nitrate, zinc phosphate, and hydrogen peroxide). Across 78 ingredient–microorganism pairs with 360 treatment–control combinations, significant and reproducible ingredient-based transcriptional response profiles were observed, providing valuable insights into the effects of these ingredients on the oral microbiome at the molecular level. This research shows that oral care product ingredients applied at biologically relevant concentrations manifest differential effects on the transcriptomics of bacterial genes in a variety of oral periodontal pathogenic bacteria. Stannous fluoride, stannous chloride, and cetylpyridinium chloride showed the most robust efficacy in inhibiting the growth or gene expression of various bacteria and pathogenic pathways. Combining multiple ingredients targeting different mechanisms might be more efficient than single ingredients in complex oral microbiomes.</description><subject>Antimicrobial agents</subject><subject>Bacteria</subject><subject>Bacterial infections</subject><subject>Bicarbonates</subject><subject>Biofilms</subject><subject>Biological effects</subject><subject>Cetylpyridinium chloride</subject><subject>Chlorides</subject><subject>Fluoride treatments</subject><subject>Fluorides</subject><subject>Gene expression</subject><subject>Gram-negative bacteria</subject><subject>Gram-positive bacteria</subject><subject>Gum disease</subject><subject>Hydrogen peroxide</subject><subject>Hypotheses</subject><subject>Ingredients</subject><subject>Microbiomes</subject><subject>Molecular modelling</subject><subject>oral care</subject><subject>pathogen</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>Potassium</subject><subject>Potassium nitrate</subject><subject>Prebiotics</subject><subject>RNA-Seq</subject><subject>Sodium</subject><subject>Sodium fluoride</subject><subject>Sodium fluorophosphate</subject><subject>Stannous chloride</subject><subject>Stannous fluoride</subject><subject>Tin chloride</subject><subject>Toothpaste</subject><subject>Transcriptomics</subject><subject>Virulence</subject><subject>Zinc phosphate</subject><issn>2076-2607</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNotkMtqwzAQRU2h0JDmF4qga7d6WbaWaegjEJrQem_G0shRSKxEshf9-5qmdzNwGQ6Hm2UPjD4JoenzyZsYQuyg9-mUGGecK1XdZDNOS5VzRcu7bJHSgU7RTFQFm2VdvUfy6hyagQRHthGOZAURyS4GO07luu8iWo_9kEjorw87GPahw94b8gJmwOiB1BH6ZKI_D2HySKTexzB2e_L1ucy_8XKf3To4Jlz833lWv73Wq498s31fr5ab3GpZ5By0qJBJURSm0pYyiawtoZJc6NZgqzi3KG0BRitdCi25tRKdNdxwy5QS82x9xdoAh-Yc_QniTxPAN3_FNE4DcfDmiA067irKrEJXSKfalkoFRlZaoKBo6cR6vLLOMVxGTENzCGPsJ_tGMKlLyiZN8QueanQd</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Hu, Ping</creator><creator>Xie, Sancai</creator><creator>Shi, Baochen</creator><creator>Tansky, Cheryl S</creator><creator>Circello, Benjamin</creator><creator>Sagel, Paul A</creator><creator>Schneiderman, Eva</creator><creator>Biesbrock, Aaron R</creator><general>MDPI AG</general><scope>7T7</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>DOA</scope></search><sort><creationdate>20241201</creationdate><title>The Effect of Oral Care Product Ingredients on Oral Pathogenic Bacteria Transcriptomics Through RNA-Seq</title><author>Hu, Ping ; Xie, Sancai ; Shi, Baochen ; Tansky, Cheryl S ; Circello, Benjamin ; Sagel, Paul A ; Schneiderman, Eva ; Biesbrock, Aaron R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-d945-2a938e14355c89d014e1b7a84239bceb622de4d5ac96973942dd4efdc2c2d1663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antimicrobial agents</topic><topic>Bacteria</topic><topic>Bacterial infections</topic><topic>Bicarbonates</topic><topic>Biofilms</topic><topic>Biological effects</topic><topic>Cetylpyridinium chloride</topic><topic>Chlorides</topic><topic>Fluoride treatments</topic><topic>Fluorides</topic><topic>Gene expression</topic><topic>Gram-negative bacteria</topic><topic>Gram-positive bacteria</topic><topic>Gum disease</topic><topic>Hydrogen peroxide</topic><topic>Hypotheses</topic><topic>Ingredients</topic><topic>Microbiomes</topic><topic>Molecular modelling</topic><topic>oral care</topic><topic>pathogen</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>Potassium</topic><topic>Potassium nitrate</topic><topic>Prebiotics</topic><topic>RNA-Seq</topic><topic>Sodium</topic><topic>Sodium fluoride</topic><topic>Sodium fluorophosphate</topic><topic>Stannous chloride</topic><topic>Stannous fluoride</topic><topic>Tin chloride</topic><topic>Toothpaste</topic><topic>Transcriptomics</topic><topic>Virulence</topic><topic>Zinc phosphate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Ping</creatorcontrib><creatorcontrib>Xie, Sancai</creatorcontrib><creatorcontrib>Shi, Baochen</creatorcontrib><creatorcontrib>Tansky, Cheryl S</creatorcontrib><creatorcontrib>Circello, Benjamin</creatorcontrib><creatorcontrib>Sagel, Paul A</creatorcontrib><creatorcontrib>Schneiderman, Eva</creatorcontrib><creatorcontrib>Biesbrock, Aaron R</creatorcontrib><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Microorganisms (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Ping</au><au>Xie, Sancai</au><au>Shi, Baochen</au><au>Tansky, Cheryl S</au><au>Circello, Benjamin</au><au>Sagel, Paul A</au><au>Schneiderman, Eva</au><au>Biesbrock, Aaron R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Oral Care Product Ingredients on Oral Pathogenic Bacteria Transcriptomics Through RNA-Seq</atitle><jtitle>Microorganisms (Basel)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>12</volume><issue>12</issue><spage>2668</spage><pages>2668-</pages><eissn>2076-2607</eissn><abstract>Various ingredients are utilized to inhibit the growth of harmful bacteria associated with cavities, gum disease, and bad breath. However, the precise mechanisms by which these ingredients affect the oral microbiome have not been fully understood at the molecular level. To elucidate the molecular mechanisms, a high-throughput bacterial transcriptomics study was conducted, and the gene expression profiles of six common oral bacteria, including two Gram-positive bacteria (Actinomyces viscosus, Streptococcus mutans) and four Gram-negative bacteria (Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, and Prevotella pallens), were analyzed. The bacteria were exposed to nine common ingredients in toothpaste and mouthwash at different concentrations (stannous fluoride, stannous chloride, arginine bicarbonate, cetylpyridinium chloride, sodium monofluorophosphate, sodium fluoride, potassium nitrate, zinc phosphate, and hydrogen peroxide). Across 78 ingredient–microorganism pairs with 360 treatment–control combinations, significant and reproducible ingredient-based transcriptional response profiles were observed, providing valuable insights into the effects of these ingredients on the oral microbiome at the molecular level. This research shows that oral care product ingredients applied at biologically relevant concentrations manifest differential effects on the transcriptomics of bacterial genes in a variety of oral periodontal pathogenic bacteria. Stannous fluoride, stannous chloride, and cetylpyridinium chloride showed the most robust efficacy in inhibiting the growth or gene expression of various bacteria and pathogenic pathways. Combining multiple ingredients targeting different mechanisms might be more efficient than single ingredients in complex oral microbiomes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/microorganisms12122668</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2076-2607 |
ispartof | Microorganisms (Basel), 2024-12, Vol.12 (12), p.2668 |
issn | 2076-2607 |
language | eng |
recordid | cdi_proquest_journals_3149701355 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Antimicrobial agents Bacteria Bacterial infections Bicarbonates Biofilms Biological effects Cetylpyridinium chloride Chlorides Fluoride treatments Fluorides Gene expression Gram-negative bacteria Gram-positive bacteria Gum disease Hydrogen peroxide Hypotheses Ingredients Microbiomes Molecular modelling oral care pathogen Pathogenesis Pathogens Potassium Potassium nitrate Prebiotics RNA-Seq Sodium Sodium fluoride Sodium fluorophosphate Stannous chloride Stannous fluoride Tin chloride Toothpaste Transcriptomics Virulence Zinc phosphate |
title | The Effect of Oral Care Product Ingredients on Oral Pathogenic Bacteria Transcriptomics Through RNA-Seq |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A48%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Oral%20Care%20Product%20Ingredients%20on%20Oral%20Pathogenic%20Bacteria%20Transcriptomics%20Through%20RNA-Seq&rft.jtitle=Microorganisms%20(Basel)&rft.au=Hu,%20Ping&rft.date=2024-12-01&rft.volume=12&rft.issue=12&rft.spage=2668&rft.pages=2668-&rft.eissn=2076-2607&rft_id=info:doi/10.3390/microorganisms12122668&rft_dat=%3Cproquest_doaj_%3E3149701355%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149701355&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_ef2f801d6ef54f6bb046ac4893e30ed0&rfr_iscdi=true |