The Role of MaFAD2 Gene in Bud Dormancy and Cold Resistance in Mulberry Trees ( Morus alba L.)
Bud dormancy is a critical adaptive trait in woody plants, essential for enduring harsh winter conditions. The relationship between bud break timing and cold resistance is complex and has been a subject of debate. This study utilizes a Genome-Wide Association Study (GWAS) on 201 natural mulberry pop...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2024-12, Vol.25 (24), p.13341 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 13341 |
container_title | International journal of molecular sciences |
container_volume | 25 |
creator | Zhao, Mengjie Zhou, Gaoxing Liu, Peigang Wang, Zhifeng Yang, Lu Li, Tianyan Tojiddinovich, Valiev Sayfiddin Ubaydullayevich, Nasirillayev Bakhtiyar Adilovna, Ismatullaeva Diloram Khasanboy Ugl, Khudjamatov Safarali Liu, Yan Lv, Zhiqiang Wei, Jia Lin, Tianbao |
description | Bud dormancy is a critical adaptive trait in woody plants, essential for enduring harsh winter conditions. The relationship between bud break timing and cold resistance is complex and has been a subject of debate. This study utilizes a Genome-Wide Association Study (GWAS) on 201 natural mulberry populations to identify the
gene, which shows the strongest association with bud break timing. Known for its role in cold resistance,
's link to bud break timing suggests a direct correlation between these traits. Expression analysis of
in mulberry trees indicates peak activity in dormant buds, declining as dormancy ends. Selective sweep analysis on germplasms from contrasting climates reveals positive selection in
in cold-resistant Uzbek germplasms. Overexpression of
in early-budding germplasms significantly delays bud break, confirming its regulatory role. These findings highlight
as a key determinant of cold tolerance variability among mulberry germplasms, with its expression directly correlated with bud break timing. This provides a molecular basis for selecting cold-resistant mulberry germplasms based on bud break timing in breeding programs. |
doi_str_mv | 10.3390/ijms252413341 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_proquest_journals_3149647407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821834473</galeid><sourcerecordid>A821834473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-306e3605972ce2f5544d6ad195a21c846ae0a427037802ac5b757783827576ec3</originalsourceid><addsrcrecordid>eNptkk1vEzEQhi0Eom3okSuyxKU9bPDneveEQkoLUiKkKlxrOd7Z1pHXLna2Uv59XVpKg9AcZjR-5h2N9SL0npIp5y355DZDZpIJyrmgr9AhFYxVhNTq9Yv6AB3lvCGEcSbbt-iAt6puKVGH6Gp1A_gyesCxx0tzPjtj-AICYBfwl7HDZzENJtgdNqHD8-g7fAnZ5W3p_WaWo19DSju8SgAZn-BlTGPGxq8NXkxP36E3vfEZjp_yBP08_7qaf6sWPy6-z2eLyvK63Vac1MBrIlvFLLBeSiG62nS0lYZR24jaADGCKcJVQ5ixcq2kUg1vWMk1WD5Bnx91b8f1AJ2FsE3G69vkBpN2Ohqn91-Cu9HX8U5TqlhDi9QEnTwppPhrhLzVg8sWvDcB4pg1p1JyqRinBf34D7qJYwrlvkKJthZKEPWXujYetAt9LIvtg6ieNYw2XAjFCzX9D1Wig8HZGKB3pb83UD0O2BRzTtA_H0mJfnCE3nNE4T-8_Jln-o8F-D1586wO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149647407</pqid></control><display><type>article</type><title>The Role of MaFAD2 Gene in Bud Dormancy and Cold Resistance in Mulberry Trees ( Morus alba L.)</title><source>MEDLINE</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhao, Mengjie ; Zhou, Gaoxing ; Liu, Peigang ; Wang, Zhifeng ; Yang, Lu ; Li, Tianyan ; Tojiddinovich, Valiev Sayfiddin ; Ubaydullayevich, Nasirillayev Bakhtiyar ; Adilovna, Ismatullaeva Diloram ; Khasanboy Ugl, Khudjamatov Safarali ; Liu, Yan ; Lv, Zhiqiang ; Wei, Jia ; Lin, Tianbao</creator><creatorcontrib>Zhao, Mengjie ; Zhou, Gaoxing ; Liu, Peigang ; Wang, Zhifeng ; Yang, Lu ; Li, Tianyan ; Tojiddinovich, Valiev Sayfiddin ; Ubaydullayevich, Nasirillayev Bakhtiyar ; Adilovna, Ismatullaeva Diloram ; Khasanboy Ugl, Khudjamatov Safarali ; Liu, Yan ; Lv, Zhiqiang ; Wei, Jia ; Lin, Tianbao</creatorcontrib><description>Bud dormancy is a critical adaptive trait in woody plants, essential for enduring harsh winter conditions. The relationship between bud break timing and cold resistance is complex and has been a subject of debate. This study utilizes a Genome-Wide Association Study (GWAS) on 201 natural mulberry populations to identify the
gene, which shows the strongest association with bud break timing. Known for its role in cold resistance,
's link to bud break timing suggests a direct correlation between these traits. Expression analysis of
in mulberry trees indicates peak activity in dormant buds, declining as dormancy ends. Selective sweep analysis on germplasms from contrasting climates reveals positive selection in
in cold-resistant Uzbek germplasms. Overexpression of
in early-budding germplasms significantly delays bud break, confirming its regulatory role. These findings highlight
as a key determinant of cold tolerance variability among mulberry germplasms, with its expression directly correlated with bud break timing. This provides a molecular basis for selecting cold-resistant mulberry germplasms based on bud break timing in breeding programs.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms252413341</identifier><identifier>PMID: 39769107</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Abscisic acid ; Agricultural production ; Analysis ; Cold ; Cold Temperature ; Escheat laws ; Fatty acids ; Gene expression ; Gene Expression Regulation, Plant ; Genes ; Genome-Wide Association Study ; Genomes ; Genomics ; Leaves ; Morus - genetics ; Physiology ; Plant Dormancy - genetics ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Polymorphism, Single Nucleotide ; Signal transduction ; Temperature ; Transcription factors ; Winter</subject><ispartof>International journal of molecular sciences, 2024-12, Vol.25 (24), p.13341</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c369t-306e3605972ce2f5544d6ad195a21c846ae0a427037802ac5b757783827576ec3</cites><orcidid>0000-0003-3510-753X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728178/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11728178/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39769107$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Mengjie</creatorcontrib><creatorcontrib>Zhou, Gaoxing</creatorcontrib><creatorcontrib>Liu, Peigang</creatorcontrib><creatorcontrib>Wang, Zhifeng</creatorcontrib><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Li, Tianyan</creatorcontrib><creatorcontrib>Tojiddinovich, Valiev Sayfiddin</creatorcontrib><creatorcontrib>Ubaydullayevich, Nasirillayev Bakhtiyar</creatorcontrib><creatorcontrib>Adilovna, Ismatullaeva Diloram</creatorcontrib><creatorcontrib>Khasanboy Ugl, Khudjamatov Safarali</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Lv, Zhiqiang</creatorcontrib><creatorcontrib>Wei, Jia</creatorcontrib><creatorcontrib>Lin, Tianbao</creatorcontrib><title>The Role of MaFAD2 Gene in Bud Dormancy and Cold Resistance in Mulberry Trees ( Morus alba L.)</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Bud dormancy is a critical adaptive trait in woody plants, essential for enduring harsh winter conditions. The relationship between bud break timing and cold resistance is complex and has been a subject of debate. This study utilizes a Genome-Wide Association Study (GWAS) on 201 natural mulberry populations to identify the
gene, which shows the strongest association with bud break timing. Known for its role in cold resistance,
's link to bud break timing suggests a direct correlation between these traits. Expression analysis of
in mulberry trees indicates peak activity in dormant buds, declining as dormancy ends. Selective sweep analysis on germplasms from contrasting climates reveals positive selection in
in cold-resistant Uzbek germplasms. Overexpression of
in early-budding germplasms significantly delays bud break, confirming its regulatory role. These findings highlight
as a key determinant of cold tolerance variability among mulberry germplasms, with its expression directly correlated with bud break timing. This provides a molecular basis for selecting cold-resistant mulberry germplasms based on bud break timing in breeding programs.</description><subject>Abscisic acid</subject><subject>Agricultural production</subject><subject>Analysis</subject><subject>Cold</subject><subject>Cold Temperature</subject><subject>Escheat laws</subject><subject>Fatty acids</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Leaves</subject><subject>Morus - genetics</subject><subject>Physiology</subject><subject>Plant Dormancy - genetics</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Signal transduction</subject><subject>Temperature</subject><subject>Transcription factors</subject><subject>Winter</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkk1vEzEQhi0Eom3okSuyxKU9bPDneveEQkoLUiKkKlxrOd7Z1pHXLna2Uv59XVpKg9AcZjR-5h2N9SL0npIp5y355DZDZpIJyrmgr9AhFYxVhNTq9Yv6AB3lvCGEcSbbt-iAt6puKVGH6Gp1A_gyesCxx0tzPjtj-AICYBfwl7HDZzENJtgdNqHD8-g7fAnZ5W3p_WaWo19DSju8SgAZn-BlTGPGxq8NXkxP36E3vfEZjp_yBP08_7qaf6sWPy6-z2eLyvK63Vac1MBrIlvFLLBeSiG62nS0lYZR24jaADGCKcJVQ5ixcq2kUg1vWMk1WD5Bnx91b8f1AJ2FsE3G69vkBpN2Ohqn91-Cu9HX8U5TqlhDi9QEnTwppPhrhLzVg8sWvDcB4pg1p1JyqRinBf34D7qJYwrlvkKJthZKEPWXujYetAt9LIvtg6ieNYw2XAjFCzX9D1Wig8HZGKB3pb83UD0O2BRzTtA_H0mJfnCE3nNE4T-8_Jln-o8F-D1586wO</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>Zhao, Mengjie</creator><creator>Zhou, Gaoxing</creator><creator>Liu, Peigang</creator><creator>Wang, Zhifeng</creator><creator>Yang, Lu</creator><creator>Li, Tianyan</creator><creator>Tojiddinovich, Valiev Sayfiddin</creator><creator>Ubaydullayevich, Nasirillayev Bakhtiyar</creator><creator>Adilovna, Ismatullaeva Diloram</creator><creator>Khasanboy Ugl, Khudjamatov Safarali</creator><creator>Liu, Yan</creator><creator>Lv, Zhiqiang</creator><creator>Wei, Jia</creator><creator>Lin, Tianbao</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3510-753X</orcidid></search><sort><creationdate>20241212</creationdate><title>The Role of MaFAD2 Gene in Bud Dormancy and Cold Resistance in Mulberry Trees ( Morus alba L.)</title><author>Zhao, Mengjie ; Zhou, Gaoxing ; Liu, Peigang ; Wang, Zhifeng ; Yang, Lu ; Li, Tianyan ; Tojiddinovich, Valiev Sayfiddin ; Ubaydullayevich, Nasirillayev Bakhtiyar ; Adilovna, Ismatullaeva Diloram ; Khasanboy Ugl, Khudjamatov Safarali ; Liu, Yan ; Lv, Zhiqiang ; Wei, Jia ; Lin, Tianbao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-306e3605972ce2f5544d6ad195a21c846ae0a427037802ac5b757783827576ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Abscisic acid</topic><topic>Agricultural production</topic><topic>Analysis</topic><topic>Cold</topic><topic>Cold Temperature</topic><topic>Escheat laws</topic><topic>Fatty acids</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Leaves</topic><topic>Morus - genetics</topic><topic>Physiology</topic><topic>Plant Dormancy - genetics</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Signal transduction</topic><topic>Temperature</topic><topic>Transcription factors</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Mengjie</creatorcontrib><creatorcontrib>Zhou, Gaoxing</creatorcontrib><creatorcontrib>Liu, Peigang</creatorcontrib><creatorcontrib>Wang, Zhifeng</creatorcontrib><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Li, Tianyan</creatorcontrib><creatorcontrib>Tojiddinovich, Valiev Sayfiddin</creatorcontrib><creatorcontrib>Ubaydullayevich, Nasirillayev Bakhtiyar</creatorcontrib><creatorcontrib>Adilovna, Ismatullaeva Diloram</creatorcontrib><creatorcontrib>Khasanboy Ugl, Khudjamatov Safarali</creatorcontrib><creatorcontrib>Liu, Yan</creatorcontrib><creatorcontrib>Lv, Zhiqiang</creatorcontrib><creatorcontrib>Wei, Jia</creatorcontrib><creatorcontrib>Lin, Tianbao</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Mengjie</au><au>Zhou, Gaoxing</au><au>Liu, Peigang</au><au>Wang, Zhifeng</au><au>Yang, Lu</au><au>Li, Tianyan</au><au>Tojiddinovich, Valiev Sayfiddin</au><au>Ubaydullayevich, Nasirillayev Bakhtiyar</au><au>Adilovna, Ismatullaeva Diloram</au><au>Khasanboy Ugl, Khudjamatov Safarali</au><au>Liu, Yan</au><au>Lv, Zhiqiang</au><au>Wei, Jia</au><au>Lin, Tianbao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of MaFAD2 Gene in Bud Dormancy and Cold Resistance in Mulberry Trees ( Morus alba L.)</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2024-12-12</date><risdate>2024</risdate><volume>25</volume><issue>24</issue><spage>13341</spage><pages>13341-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Bud dormancy is a critical adaptive trait in woody plants, essential for enduring harsh winter conditions. The relationship between bud break timing and cold resistance is complex and has been a subject of debate. This study utilizes a Genome-Wide Association Study (GWAS) on 201 natural mulberry populations to identify the
gene, which shows the strongest association with bud break timing. Known for its role in cold resistance,
's link to bud break timing suggests a direct correlation between these traits. Expression analysis of
in mulberry trees indicates peak activity in dormant buds, declining as dormancy ends. Selective sweep analysis on germplasms from contrasting climates reveals positive selection in
in cold-resistant Uzbek germplasms. Overexpression of
in early-budding germplasms significantly delays bud break, confirming its regulatory role. These findings highlight
as a key determinant of cold tolerance variability among mulberry germplasms, with its expression directly correlated with bud break timing. This provides a molecular basis for selecting cold-resistant mulberry germplasms based on bud break timing in breeding programs.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39769107</pmid><doi>10.3390/ijms252413341</doi><orcidid>https://orcid.org/0000-0003-3510-753X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2024-12, Vol.25 (24), p.13341 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_proquest_journals_3149647407 |
source | MEDLINE; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Abscisic acid Agricultural production Analysis Cold Cold Temperature Escheat laws Fatty acids Gene expression Gene Expression Regulation, Plant Genes Genome-Wide Association Study Genomes Genomics Leaves Morus - genetics Physiology Plant Dormancy - genetics Plant Proteins - genetics Plant Proteins - metabolism Polymorphism, Single Nucleotide Signal transduction Temperature Transcription factors Winter |
title | The Role of MaFAD2 Gene in Bud Dormancy and Cold Resistance in Mulberry Trees ( Morus alba L.) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20MaFAD2%20Gene%20in%20Bud%20Dormancy%20and%20Cold%20Resistance%20in%20Mulberry%20Trees%20(%20Morus%20alba%20L.)&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Zhao,%20Mengjie&rft.date=2024-12-12&rft.volume=25&rft.issue=24&rft.spage=13341&rft.pages=13341-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms252413341&rft_dat=%3Cgale_pubme%3EA821834473%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149647407&rft_id=info:pmid/39769107&rft_galeid=A821834473&rfr_iscdi=true |