Optimality of Vaccination for an SIR Epidemic with an ICU Constraint

This paper studies an optimal control problem for a class of SIR epidemic models, in scenarios in which the infected population is constrained to be lower than a critical threshold imposed by the intensive care unit (ICU) capacity. The vaccination effort possibly imposed by the health-care deciders...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2025, Vol.204 (1), p.8, Article 8
Hauptverfasser: Della Rossa, Matteo, Freddi, Lorenzo, Goreac, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 8
container_title Journal of optimization theory and applications
container_volume 204
creator Della Rossa, Matteo
Freddi, Lorenzo
Goreac, Dan
description This paper studies an optimal control problem for a class of SIR epidemic models, in scenarios in which the infected population is constrained to be lower than a critical threshold imposed by the intensive care unit (ICU) capacity. The vaccination effort possibly imposed by the health-care deciders is classically modeled by a control input affecting the epidemic dynamic. After a preliminary viability analysis, the existence of optimal controls is established, and their structure is characterized by using a state-constrained version of Pontryagin’s theorem. The resulting optimal controls necessarily have a bang-bang regime with at most one switch. More precisely, the optimal strategies impose the maximum-allowed vaccination effort in an initial period of time, which can cease only once the ICU constraint can be satisfied without further vaccination. The switching times are characterized in order to identify conditions under which vaccination should be implemented or halted. The uniqueness of the optimal control is also discussed. Numerical examples illustrate our theoretical results and the corresponding optimal strategies. The analysis is eventually extended to the infinite horizon by Γ -convergence arguments.
doi_str_mv 10.1007/s10957-024-02598-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3149647243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149647243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-eb15c425b329879072f2544a4cc979d3e75ce1c2447e73f7e9d90b97bcfa0fb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPA8-rkY83mKGuthUJBq9eQTRNNaXfXJKX035u6gjcPw8DwfjAPQtcEbgmAuIsEZCkKoDxPKatif4JGpBSsoJWoTtEIgNKCUSbP0UWMawCQleAj9Ljok9_qjU8H3Dn8ro3xrU6-a7HrAtYtfp294EnvV3brDd779Hk8zuo3XHdtTEH7Nl2iM6c30V797jFaPk2W9XMxX0xn9cO8MBQgFbYhpeG0bBjN5RIEdbTkXHNjpJArZkVpLDGUc2EFc8LKlYRGisY4Da5hY3QzxPah-9rZmNS624U2NypGuLzngnKWVXRQmdDFGKxTfcgfhoMioI6w1ABLZVjqB5baZxMbTDGL2w8b_qL_cX0Dr6NsEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149647243</pqid></control><display><type>article</type><title>Optimality of Vaccination for an SIR Epidemic with an ICU Constraint</title><source>SpringerLink Journals</source><creator>Della Rossa, Matteo ; Freddi, Lorenzo ; Goreac, Dan</creator><creatorcontrib>Della Rossa, Matteo ; Freddi, Lorenzo ; Goreac, Dan</creatorcontrib><description>This paper studies an optimal control problem for a class of SIR epidemic models, in scenarios in which the infected population is constrained to be lower than a critical threshold imposed by the intensive care unit (ICU) capacity. The vaccination effort possibly imposed by the health-care deciders is classically modeled by a control input affecting the epidemic dynamic. After a preliminary viability analysis, the existence of optimal controls is established, and their structure is characterized by using a state-constrained version of Pontryagin’s theorem. The resulting optimal controls necessarily have a bang-bang regime with at most one switch. More precisely, the optimal strategies impose the maximum-allowed vaccination effort in an initial period of time, which can cease only once the ICU constraint can be satisfied without further vaccination. The switching times are characterized in order to identify conditions under which vaccination should be implemented or halted. The uniqueness of the optimal control is also discussed. Numerical examples illustrate our theoretical results and the corresponding optimal strategies. The analysis is eventually extended to the infinite horizon by Γ -convergence arguments.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-024-02598-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Constraints ; Disease control ; Engineering ; Epidemics ; Immunization ; Intensive care ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimal control ; Optimization ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2025, Vol.204 (1), p.8, Article 8</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Jan 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-eb15c425b329879072f2544a4cc979d3e75ce1c2447e73f7e9d90b97bcfa0fb3</cites><orcidid>0000-0002-6954-4773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-024-02598-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-024-02598-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Della Rossa, Matteo</creatorcontrib><creatorcontrib>Freddi, Lorenzo</creatorcontrib><creatorcontrib>Goreac, Dan</creatorcontrib><title>Optimality of Vaccination for an SIR Epidemic with an ICU Constraint</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>This paper studies an optimal control problem for a class of SIR epidemic models, in scenarios in which the infected population is constrained to be lower than a critical threshold imposed by the intensive care unit (ICU) capacity. The vaccination effort possibly imposed by the health-care deciders is classically modeled by a control input affecting the epidemic dynamic. After a preliminary viability analysis, the existence of optimal controls is established, and their structure is characterized by using a state-constrained version of Pontryagin’s theorem. The resulting optimal controls necessarily have a bang-bang regime with at most one switch. More precisely, the optimal strategies impose the maximum-allowed vaccination effort in an initial period of time, which can cease only once the ICU constraint can be satisfied without further vaccination. The switching times are characterized in order to identify conditions under which vaccination should be implemented or halted. The uniqueness of the optimal control is also discussed. Numerical examples illustrate our theoretical results and the corresponding optimal strategies. The analysis is eventually extended to the infinite horizon by Γ -convergence arguments.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Constraints</subject><subject>Disease control</subject><subject>Engineering</subject><subject>Epidemics</subject><subject>Immunization</subject><subject>Intensive care</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPA8-rkY83mKGuthUJBq9eQTRNNaXfXJKX035u6gjcPw8DwfjAPQtcEbgmAuIsEZCkKoDxPKatif4JGpBSsoJWoTtEIgNKCUSbP0UWMawCQleAj9Ljok9_qjU8H3Dn8ro3xrU6-a7HrAtYtfp294EnvV3brDd779Hk8zuo3XHdtTEH7Nl2iM6c30V797jFaPk2W9XMxX0xn9cO8MBQgFbYhpeG0bBjN5RIEdbTkXHNjpJArZkVpLDGUc2EFc8LKlYRGisY4Da5hY3QzxPah-9rZmNS624U2NypGuLzngnKWVXRQmdDFGKxTfcgfhoMioI6w1ABLZVjqB5baZxMbTDGL2w8b_qL_cX0Dr6NsEQ</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Della Rossa, Matteo</creator><creator>Freddi, Lorenzo</creator><creator>Goreac, Dan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6954-4773</orcidid></search><sort><creationdate>2025</creationdate><title>Optimality of Vaccination for an SIR Epidemic with an ICU Constraint</title><author>Della Rossa, Matteo ; Freddi, Lorenzo ; Goreac, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-eb15c425b329879072f2544a4cc979d3e75ce1c2447e73f7e9d90b97bcfa0fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Constraints</topic><topic>Disease control</topic><topic>Engineering</topic><topic>Epidemics</topic><topic>Immunization</topic><topic>Intensive care</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Della Rossa, Matteo</creatorcontrib><creatorcontrib>Freddi, Lorenzo</creatorcontrib><creatorcontrib>Goreac, Dan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Della Rossa, Matteo</au><au>Freddi, Lorenzo</au><au>Goreac, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimality of Vaccination for an SIR Epidemic with an ICU Constraint</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2025</date><risdate>2025</risdate><volume>204</volume><issue>1</issue><spage>8</spage><pages>8-</pages><artnum>8</artnum><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>This paper studies an optimal control problem for a class of SIR epidemic models, in scenarios in which the infected population is constrained to be lower than a critical threshold imposed by the intensive care unit (ICU) capacity. The vaccination effort possibly imposed by the health-care deciders is classically modeled by a control input affecting the epidemic dynamic. After a preliminary viability analysis, the existence of optimal controls is established, and their structure is characterized by using a state-constrained version of Pontryagin’s theorem. The resulting optimal controls necessarily have a bang-bang regime with at most one switch. More precisely, the optimal strategies impose the maximum-allowed vaccination effort in an initial period of time, which can cease only once the ICU constraint can be satisfied without further vaccination. The switching times are characterized in order to identify conditions under which vaccination should be implemented or halted. The uniqueness of the optimal control is also discussed. Numerical examples illustrate our theoretical results and the corresponding optimal strategies. The analysis is eventually extended to the infinite horizon by Γ -convergence arguments.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-024-02598-w</doi><orcidid>https://orcid.org/0000-0002-6954-4773</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3239
ispartof Journal of optimization theory and applications, 2025, Vol.204 (1), p.8, Article 8
issn 0022-3239
1573-2878
language eng
recordid cdi_proquest_journals_3149647243
source SpringerLink Journals
subjects Applications of Mathematics
Calculus of Variations and Optimal Control
Optimization
Constraints
Disease control
Engineering
Epidemics
Immunization
Intensive care
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimal control
Optimization
Theory of Computation
title Optimality of Vaccination for an SIR Epidemic with an ICU Constraint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimality%20of%20Vaccination%20for%20an%20SIR%20Epidemic%20with%20an%20ICU%20Constraint&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Della%20Rossa,%20Matteo&rft.date=2025&rft.volume=204&rft.issue=1&rft.spage=8&rft.pages=8-&rft.artnum=8&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-024-02598-w&rft_dat=%3Cproquest_cross%3E3149647243%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149647243&rft_id=info:pmid/&rfr_iscdi=true