Multi-modal fusion in ergonomic health: bridging visual and pressure for sitting posture detection

As the contradiction between the pursuit of health and the increasing duration of sedentary office work intensifies, there has been a growing focus on maintaining correct sitting posture while working in recent years. Scientific studies have shown that sitting posture correction plays a positive rol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CCF transactions on pervasive computing and interaction (Online) 2024-12, Vol.6 (4), p.380-393
Hauptverfasser: Quan, Qinxiao, Gao, Yang, Bai, Yang, Jin, Zhanpeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 393
container_issue 4
container_start_page 380
container_title CCF transactions on pervasive computing and interaction (Online)
container_volume 6
creator Quan, Qinxiao
Gao, Yang
Bai, Yang
Jin, Zhanpeng
description As the contradiction between the pursuit of health and the increasing duration of sedentary office work intensifies, there has been a growing focus on maintaining correct sitting posture while working in recent years. Scientific studies have shown that sitting posture correction plays a positive role in alleviating physical pain. With the rapid development of artificial intelligence technology, a significant amount of research has shifted towards implementing sitting posture detection and recognition systems using machine learning approaches. In this paper, we introduce an innovative sitting posture recognition system that integrates visual and pressure modalities. The system employs a differentiated pre-training strategy for training the bimodal models and features a feature fusion module designed based on feed-forward networks. Our system utilizes commonly available built-in cameras in laptops for collecting visual data and thin-film pressure sensor mats for pressure data in office scenarios. It achieved an F1-Macro score of 95.43% on a dataset with complex composite actions, marking an improvement of 7.13% and 10.79% over systems that rely solely on pressure or visual modalities, respectively, and a 7.07% improvement over systems using a uniform pre-training strategy.
doi_str_mv 10.1007/s42486-024-00164-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3149645226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149645226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c156t-7f7bbc79bd4d5e320ae9ddcf28435f41461f6a01bc762851c5b978568f3479c03</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMoWGpfwFXAdTTJJJkZd1K8QcWNgruQyaVNmU7GJCP17U2tuDqX_-Mc-AC4JPiaYFzfJEZZIxCmDGFMBEP7EzCjvIyc0ub0vycf52CR0hZjTGuCSzYD3cvUZ492wageuin5MEA_QBvXYQg7r-HGqj5vbmEXvVn7YQ2_fJoKqwYDx2hTmqKFLkSYfM6HfAwpH3bGZqtzuXcBzpzqk1381Tl4f7h_Wz6h1evj8_JuhTThIqPa1V2n67YzzHBbUaxsa4x2tGEVd4wwQZxQmBRG0IYTzbu2brhoXMXqVuNqDq6Od8cYPiebstyGKQ7lpawIawUrNkSh6JHSMaQUrZNj9DsVvyXB8qBTHnXKolP-6pT76gcFy2l_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149645226</pqid></control><display><type>article</type><title>Multi-modal fusion in ergonomic health: bridging visual and pressure for sitting posture detection</title><source>SpringerLink Journals</source><creator>Quan, Qinxiao ; Gao, Yang ; Bai, Yang ; Jin, Zhanpeng</creator><creatorcontrib>Quan, Qinxiao ; Gao, Yang ; Bai, Yang ; Jin, Zhanpeng</creatorcontrib><description>As the contradiction between the pursuit of health and the increasing duration of sedentary office work intensifies, there has been a growing focus on maintaining correct sitting posture while working in recent years. Scientific studies have shown that sitting posture correction plays a positive role in alleviating physical pain. With the rapid development of artificial intelligence technology, a significant amount of research has shifted towards implementing sitting posture detection and recognition systems using machine learning approaches. In this paper, we introduce an innovative sitting posture recognition system that integrates visual and pressure modalities. The system employs a differentiated pre-training strategy for training the bimodal models and features a feature fusion module designed based on feed-forward networks. Our system utilizes commonly available built-in cameras in laptops for collecting visual data and thin-film pressure sensor mats for pressure data in office scenarios. It achieved an F1-Macro score of 95.43% on a dataset with complex composite actions, marking an improvement of 7.13% and 10.79% over systems that rely solely on pressure or visual modalities, respectively, and a 7.07% improvement over systems using a uniform pre-training strategy.</description><identifier>ISSN: 2524-521X</identifier><identifier>EISSN: 2524-5228</identifier><identifier>DOI: 10.1007/s42486-024-00164-x</identifier><language>eng</language><publisher>Harbin: Springer Nature B.V</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Cameras ; Classification ; Data processing ; Machine learning ; Monitoring systems ; Neural networks ; Posture ; Pressure sensors ; R&amp;D ; Research &amp; development ; Sedentary behavior ; Sensors ; Thin films</subject><ispartof>CCF transactions on pervasive computing and interaction (Online), 2024-12, Vol.6 (4), p.380-393</ispartof><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c156t-7f7bbc79bd4d5e320ae9ddcf28435f41461f6a01bc762851c5b978568f3479c03</cites><orcidid>0000-0002-3020-3736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Quan, Qinxiao</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Jin, Zhanpeng</creatorcontrib><title>Multi-modal fusion in ergonomic health: bridging visual and pressure for sitting posture detection</title><title>CCF transactions on pervasive computing and interaction (Online)</title><description>As the contradiction between the pursuit of health and the increasing duration of sedentary office work intensifies, there has been a growing focus on maintaining correct sitting posture while working in recent years. Scientific studies have shown that sitting posture correction plays a positive role in alleviating physical pain. With the rapid development of artificial intelligence technology, a significant amount of research has shifted towards implementing sitting posture detection and recognition systems using machine learning approaches. In this paper, we introduce an innovative sitting posture recognition system that integrates visual and pressure modalities. The system employs a differentiated pre-training strategy for training the bimodal models and features a feature fusion module designed based on feed-forward networks. Our system utilizes commonly available built-in cameras in laptops for collecting visual data and thin-film pressure sensor mats for pressure data in office scenarios. It achieved an F1-Macro score of 95.43% on a dataset with complex composite actions, marking an improvement of 7.13% and 10.79% over systems that rely solely on pressure or visual modalities, respectively, and a 7.07% improvement over systems using a uniform pre-training strategy.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Cameras</subject><subject>Classification</subject><subject>Data processing</subject><subject>Machine learning</subject><subject>Monitoring systems</subject><subject>Neural networks</subject><subject>Posture</subject><subject>Pressure sensors</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Sedentary behavior</subject><subject>Sensors</subject><subject>Thin films</subject><issn>2524-521X</issn><issn>2524-5228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKAzEUhoMoWGpfwFXAdTTJJJkZd1K8QcWNgruQyaVNmU7GJCP17U2tuDqX_-Mc-AC4JPiaYFzfJEZZIxCmDGFMBEP7EzCjvIyc0ub0vycf52CR0hZjTGuCSzYD3cvUZ492wageuin5MEA_QBvXYQg7r-HGqj5vbmEXvVn7YQ2_fJoKqwYDx2hTmqKFLkSYfM6HfAwpH3bGZqtzuXcBzpzqk1381Tl4f7h_Wz6h1evj8_JuhTThIqPa1V2n67YzzHBbUaxsa4x2tGEVd4wwQZxQmBRG0IYTzbu2brhoXMXqVuNqDq6Od8cYPiebstyGKQ7lpawIawUrNkSh6JHSMaQUrZNj9DsVvyXB8qBTHnXKolP-6pT76gcFy2l_</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Quan, Qinxiao</creator><creator>Gao, Yang</creator><creator>Bai, Yang</creator><creator>Jin, Zhanpeng</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-3020-3736</orcidid></search><sort><creationdate>202412</creationdate><title>Multi-modal fusion in ergonomic health: bridging visual and pressure for sitting posture detection</title><author>Quan, Qinxiao ; Gao, Yang ; Bai, Yang ; Jin, Zhanpeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c156t-7f7bbc79bd4d5e320ae9ddcf28435f41461f6a01bc762851c5b978568f3479c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Cameras</topic><topic>Classification</topic><topic>Data processing</topic><topic>Machine learning</topic><topic>Monitoring systems</topic><topic>Neural networks</topic><topic>Posture</topic><topic>Pressure sensors</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Sedentary behavior</topic><topic>Sensors</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quan, Qinxiao</creatorcontrib><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Jin, Zhanpeng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>CCF transactions on pervasive computing and interaction (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quan, Qinxiao</au><au>Gao, Yang</au><au>Bai, Yang</au><au>Jin, Zhanpeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-modal fusion in ergonomic health: bridging visual and pressure for sitting posture detection</atitle><jtitle>CCF transactions on pervasive computing and interaction (Online)</jtitle><date>2024-12</date><risdate>2024</risdate><volume>6</volume><issue>4</issue><spage>380</spage><epage>393</epage><pages>380-393</pages><issn>2524-521X</issn><eissn>2524-5228</eissn><abstract>As the contradiction between the pursuit of health and the increasing duration of sedentary office work intensifies, there has been a growing focus on maintaining correct sitting posture while working in recent years. Scientific studies have shown that sitting posture correction plays a positive role in alleviating physical pain. With the rapid development of artificial intelligence technology, a significant amount of research has shifted towards implementing sitting posture detection and recognition systems using machine learning approaches. In this paper, we introduce an innovative sitting posture recognition system that integrates visual and pressure modalities. The system employs a differentiated pre-training strategy for training the bimodal models and features a feature fusion module designed based on feed-forward networks. Our system utilizes commonly available built-in cameras in laptops for collecting visual data and thin-film pressure sensor mats for pressure data in office scenarios. It achieved an F1-Macro score of 95.43% on a dataset with complex composite actions, marking an improvement of 7.13% and 10.79% over systems that rely solely on pressure or visual modalities, respectively, and a 7.07% improvement over systems using a uniform pre-training strategy.</abstract><cop>Harbin</cop><pub>Springer Nature B.V</pub><doi>10.1007/s42486-024-00164-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3020-3736</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2524-521X
ispartof CCF transactions on pervasive computing and interaction (Online), 2024-12, Vol.6 (4), p.380-393
issn 2524-521X
2524-5228
language eng
recordid cdi_proquest_journals_3149645226
source SpringerLink Journals
subjects Accuracy
Algorithms
Artificial intelligence
Cameras
Classification
Data processing
Machine learning
Monitoring systems
Neural networks
Posture
Pressure sensors
R&D
Research & development
Sedentary behavior
Sensors
Thin films
title Multi-modal fusion in ergonomic health: bridging visual and pressure for sitting posture detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A30%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-modal%20fusion%20in%20ergonomic%20health:%20bridging%20visual%20and%20pressure%20for%20sitting%20posture%20detection&rft.jtitle=CCF%20transactions%20on%20pervasive%20computing%20and%20interaction%20(Online)&rft.au=Quan,%20Qinxiao&rft.date=2024-12&rft.volume=6&rft.issue=4&rft.spage=380&rft.epage=393&rft.pages=380-393&rft.issn=2524-521X&rft.eissn=2524-5228&rft_id=info:doi/10.1007/s42486-024-00164-x&rft_dat=%3Cproquest_cross%3E3149645226%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149645226&rft_id=info:pmid/&rfr_iscdi=true