Integration of Optical Remote Sensing and Laser Point Cloud for Forest Stock Estimation in Karst Mountainous Areas

This study addresses the challenges posed by the complex topography and forest structure in karst mountainous areas, as well as the difficulties in estimating forest stock using traditional methods. We propose a method that integrates optical remote sensing data from Sentinel-2 into airborne LiDAR d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Forests 2024-12, Vol.15 (12), p.2106
Hauptverfasser: Zheng, Jiajia, Zhou, Zhongfa, Zhu, Meng, Wang, Jiale, Wan, Jiaxue, Long, Yangyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 2106
container_title Forests
container_volume 15
creator Zheng, Jiajia
Zhou, Zhongfa
Zhu, Meng
Wang, Jiale
Wan, Jiaxue
Long, Yangyang
description This study addresses the challenges posed by the complex topography and forest structure in karst mountainous areas, as well as the difficulties in estimating forest stock using traditional methods. We propose a method that integrates optical remote sensing data from Sentinel-2 into airborne LiDAR data to estimate forest stock in karst areas. First, an Allometric Growth Model correlating tree height and diameter at breast height (DBH) in karst areas was developed based on field measurements. Tree height information extracted from LiDAR data was then combined with the binary wood volume model specific to fir trees in Guizhou Province to calculate the individual tree biomass of fir trees. In addition, this study evaluated the robustness of three machine learning methods, the Random Forest Regression Model, K-Nearest Neighbors Regression Model, and Backpropagation Neural Network Model, in estimating forest stock in karst mountainous areas. The results indicate the following: (1) The Allometric Growth Model based on field data showed strong predictive power for DBH and can be used for large-scale estimation. (2) The distribution characteristics of individual tree biomass and plot biomass under different site conditions revealed the distribution pattern of fir trees in the study area, providing important information for understanding the growth status of forest stock in the region. (3) The Random Forest Regression Model demonstrated exceptional accuracy, generalization capability, and robustness in the estimation of forest stock within karst mountainous regions. This study provides an effective technical tool for estimating forest stock in karst areas and under complex terrain conditions and has significant scientific value and practical implications for the monitoring and management of forest ecosystem carbon sinks.
doi_str_mv 10.3390/f15122106
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3149610647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821831972</galeid><sourcerecordid>A821831972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-20cfbbae7006711c455074d8a92a9b0b04e82aaa7e8fccd5ecf9e39cdff38e013</originalsourceid><addsrcrecordid>eNpNUUtPwzAMjhBITLAD_yASJw4bebRLc5ymDSaGhhicqzR1powuGUl64N8TVISwD7Zsf59fCN1QMuVckntDS8oYJbMzNKJSykkhiTj_51-icYwHkqUUlWTFCIW1S7APKlnvsDd4e0pWqw6_wtEnwDtw0bo9Vq7FGxUh4BdvXcKLzvctNj7glQ8QE94lrz_wMiZ7HLisw08q5Myz711S1vk-4nkAFa_RhVFdhPGvvULvq-Xb4nGy2T6sF_PNROcd0oQRbZpGgSBkJijVRVkSUbSVkkzJhjSkgIoppQRURuu2BG0kcKlbY3gFhPIrdDvwnoL_7POQ9cH3weWWNaeFnOU7FSJXTYeqveqgts74FJTO2sLRau_A2ByfV4xWnErBMuBuAOjgYwxg6lPIS4evmpL65w313xv4N3shenA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149610647</pqid></control><display><type>article</type><title>Integration of Optical Remote Sensing and Laser Point Cloud for Forest Stock Estimation in Karst Mountainous Areas</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zheng, Jiajia ; Zhou, Zhongfa ; Zhu, Meng ; Wang, Jiale ; Wan, Jiaxue ; Long, Yangyang</creator><creatorcontrib>Zheng, Jiajia ; Zhou, Zhongfa ; Zhu, Meng ; Wang, Jiale ; Wan, Jiaxue ; Long, Yangyang</creatorcontrib><description>This study addresses the challenges posed by the complex topography and forest structure in karst mountainous areas, as well as the difficulties in estimating forest stock using traditional methods. We propose a method that integrates optical remote sensing data from Sentinel-2 into airborne LiDAR data to estimate forest stock in karst areas. First, an Allometric Growth Model correlating tree height and diameter at breast height (DBH) in karst areas was developed based on field measurements. Tree height information extracted from LiDAR data was then combined with the binary wood volume model specific to fir trees in Guizhou Province to calculate the individual tree biomass of fir trees. In addition, this study evaluated the robustness of three machine learning methods, the Random Forest Regression Model, K-Nearest Neighbors Regression Model, and Backpropagation Neural Network Model, in estimating forest stock in karst mountainous areas. The results indicate the following: (1) The Allometric Growth Model based on field data showed strong predictive power for DBH and can be used for large-scale estimation. (2) The distribution characteristics of individual tree biomass and plot biomass under different site conditions revealed the distribution pattern of fir trees in the study area, providing important information for understanding the growth status of forest stock in the region. (3) The Random Forest Regression Model demonstrated exceptional accuracy, generalization capability, and robustness in the estimation of forest stock within karst mountainous regions. This study provides an effective technical tool for estimating forest stock in karst areas and under complex terrain conditions and has significant scientific value and practical implications for the monitoring and management of forest ecosystem carbon sinks.</description><identifier>ISSN: 1999-4907</identifier><identifier>EISSN: 1999-4907</identifier><identifier>DOI: 10.3390/f15122106</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Airborne lasers ; Back propagation networks ; Biodiversity ; Biomass ; Carbon sequestration ; Carbon sinks ; Ecosystem management ; Ecosystems ; Estimates ; Estimation ; Forest ecology ; Forest ecosystems ; Forest management ; Global positioning systems ; GPS ; Karst ; Lidar ; Machine learning ; Metabolism ; Mountain regions ; Mountainous areas ; Mountains ; Neural networks ; Optical radar ; Regression models ; Remote sensing ; Robustness ; Stocks ; Terrestrial ecosystems ; Trees ; Unmanned aerial vehicles ; Vegetation</subject><ispartof>Forests, 2024-12, Vol.15 (12), p.2106</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c221t-20cfbbae7006711c455074d8a92a9b0b04e82aaa7e8fccd5ecf9e39cdff38e013</cites><orcidid>0009-0001-5863-348X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zheng, Jiajia</creatorcontrib><creatorcontrib>Zhou, Zhongfa</creatorcontrib><creatorcontrib>Zhu, Meng</creatorcontrib><creatorcontrib>Wang, Jiale</creatorcontrib><creatorcontrib>Wan, Jiaxue</creatorcontrib><creatorcontrib>Long, Yangyang</creatorcontrib><title>Integration of Optical Remote Sensing and Laser Point Cloud for Forest Stock Estimation in Karst Mountainous Areas</title><title>Forests</title><description>This study addresses the challenges posed by the complex topography and forest structure in karst mountainous areas, as well as the difficulties in estimating forest stock using traditional methods. We propose a method that integrates optical remote sensing data from Sentinel-2 into airborne LiDAR data to estimate forest stock in karst areas. First, an Allometric Growth Model correlating tree height and diameter at breast height (DBH) in karst areas was developed based on field measurements. Tree height information extracted from LiDAR data was then combined with the binary wood volume model specific to fir trees in Guizhou Province to calculate the individual tree biomass of fir trees. In addition, this study evaluated the robustness of three machine learning methods, the Random Forest Regression Model, K-Nearest Neighbors Regression Model, and Backpropagation Neural Network Model, in estimating forest stock in karst mountainous areas. The results indicate the following: (1) The Allometric Growth Model based on field data showed strong predictive power for DBH and can be used for large-scale estimation. (2) The distribution characteristics of individual tree biomass and plot biomass under different site conditions revealed the distribution pattern of fir trees in the study area, providing important information for understanding the growth status of forest stock in the region. (3) The Random Forest Regression Model demonstrated exceptional accuracy, generalization capability, and robustness in the estimation of forest stock within karst mountainous regions. This study provides an effective technical tool for estimating forest stock in karst areas and under complex terrain conditions and has significant scientific value and practical implications for the monitoring and management of forest ecosystem carbon sinks.</description><subject>Accuracy</subject><subject>Airborne lasers</subject><subject>Back propagation networks</subject><subject>Biodiversity</subject><subject>Biomass</subject><subject>Carbon sequestration</subject><subject>Carbon sinks</subject><subject>Ecosystem management</subject><subject>Ecosystems</subject><subject>Estimates</subject><subject>Estimation</subject><subject>Forest ecology</subject><subject>Forest ecosystems</subject><subject>Forest management</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Karst</subject><subject>Lidar</subject><subject>Machine learning</subject><subject>Metabolism</subject><subject>Mountain regions</subject><subject>Mountainous areas</subject><subject>Mountains</subject><subject>Neural networks</subject><subject>Optical radar</subject><subject>Regression models</subject><subject>Remote sensing</subject><subject>Robustness</subject><subject>Stocks</subject><subject>Terrestrial ecosystems</subject><subject>Trees</subject><subject>Unmanned aerial vehicles</subject><subject>Vegetation</subject><issn>1999-4907</issn><issn>1999-4907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUUtPwzAMjhBITLAD_yASJw4bebRLc5ymDSaGhhicqzR1powuGUl64N8TVISwD7Zsf59fCN1QMuVckntDS8oYJbMzNKJSykkhiTj_51-icYwHkqUUlWTFCIW1S7APKlnvsDd4e0pWqw6_wtEnwDtw0bo9Vq7FGxUh4BdvXcKLzvctNj7glQ8QE94lrz_wMiZ7HLisw08q5Myz711S1vk-4nkAFa_RhVFdhPGvvULvq-Xb4nGy2T6sF_PNROcd0oQRbZpGgSBkJijVRVkSUbSVkkzJhjSkgIoppQRURuu2BG0kcKlbY3gFhPIrdDvwnoL_7POQ9cH3weWWNaeFnOU7FSJXTYeqveqgts74FJTO2sLRau_A2ByfV4xWnErBMuBuAOjgYwxg6lPIS4evmpL65w313xv4N3shenA</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zheng, Jiajia</creator><creator>Zhou, Zhongfa</creator><creator>Zhu, Meng</creator><creator>Wang, Jiale</creator><creator>Wan, Jiaxue</creator><creator>Long, Yangyang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0009-0001-5863-348X</orcidid></search><sort><creationdate>20241201</creationdate><title>Integration of Optical Remote Sensing and Laser Point Cloud for Forest Stock Estimation in Karst Mountainous Areas</title><author>Zheng, Jiajia ; Zhou, Zhongfa ; Zhu, Meng ; Wang, Jiale ; Wan, Jiaxue ; Long, Yangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-20cfbbae7006711c455074d8a92a9b0b04e82aaa7e8fccd5ecf9e39cdff38e013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Airborne lasers</topic><topic>Back propagation networks</topic><topic>Biodiversity</topic><topic>Biomass</topic><topic>Carbon sequestration</topic><topic>Carbon sinks</topic><topic>Ecosystem management</topic><topic>Ecosystems</topic><topic>Estimates</topic><topic>Estimation</topic><topic>Forest ecology</topic><topic>Forest ecosystems</topic><topic>Forest management</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Karst</topic><topic>Lidar</topic><topic>Machine learning</topic><topic>Metabolism</topic><topic>Mountain regions</topic><topic>Mountainous areas</topic><topic>Mountains</topic><topic>Neural networks</topic><topic>Optical radar</topic><topic>Regression models</topic><topic>Remote sensing</topic><topic>Robustness</topic><topic>Stocks</topic><topic>Terrestrial ecosystems</topic><topic>Trees</topic><topic>Unmanned aerial vehicles</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Jiajia</creatorcontrib><creatorcontrib>Zhou, Zhongfa</creatorcontrib><creatorcontrib>Zhu, Meng</creatorcontrib><creatorcontrib>Wang, Jiale</creatorcontrib><creatorcontrib>Wan, Jiaxue</creatorcontrib><creatorcontrib>Long, Yangyang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>Forests</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Jiajia</au><au>Zhou, Zhongfa</au><au>Zhu, Meng</au><au>Wang, Jiale</au><au>Wan, Jiaxue</au><au>Long, Yangyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of Optical Remote Sensing and Laser Point Cloud for Forest Stock Estimation in Karst Mountainous Areas</atitle><jtitle>Forests</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>15</volume><issue>12</issue><spage>2106</spage><pages>2106-</pages><issn>1999-4907</issn><eissn>1999-4907</eissn><abstract>This study addresses the challenges posed by the complex topography and forest structure in karst mountainous areas, as well as the difficulties in estimating forest stock using traditional methods. We propose a method that integrates optical remote sensing data from Sentinel-2 into airborne LiDAR data to estimate forest stock in karst areas. First, an Allometric Growth Model correlating tree height and diameter at breast height (DBH) in karst areas was developed based on field measurements. Tree height information extracted from LiDAR data was then combined with the binary wood volume model specific to fir trees in Guizhou Province to calculate the individual tree biomass of fir trees. In addition, this study evaluated the robustness of three machine learning methods, the Random Forest Regression Model, K-Nearest Neighbors Regression Model, and Backpropagation Neural Network Model, in estimating forest stock in karst mountainous areas. The results indicate the following: (1) The Allometric Growth Model based on field data showed strong predictive power for DBH and can be used for large-scale estimation. (2) The distribution characteristics of individual tree biomass and plot biomass under different site conditions revealed the distribution pattern of fir trees in the study area, providing important information for understanding the growth status of forest stock in the region. (3) The Random Forest Regression Model demonstrated exceptional accuracy, generalization capability, and robustness in the estimation of forest stock within karst mountainous regions. This study provides an effective technical tool for estimating forest stock in karst areas and under complex terrain conditions and has significant scientific value and practical implications for the monitoring and management of forest ecosystem carbon sinks.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/f15122106</doi><orcidid>https://orcid.org/0009-0001-5863-348X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1999-4907
ispartof Forests, 2024-12, Vol.15 (12), p.2106
issn 1999-4907
1999-4907
language eng
recordid cdi_proquest_journals_3149610647
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Airborne lasers
Back propagation networks
Biodiversity
Biomass
Carbon sequestration
Carbon sinks
Ecosystem management
Ecosystems
Estimates
Estimation
Forest ecology
Forest ecosystems
Forest management
Global positioning systems
GPS
Karst
Lidar
Machine learning
Metabolism
Mountain regions
Mountainous areas
Mountains
Neural networks
Optical radar
Regression models
Remote sensing
Robustness
Stocks
Terrestrial ecosystems
Trees
Unmanned aerial vehicles
Vegetation
title Integration of Optical Remote Sensing and Laser Point Cloud for Forest Stock Estimation in Karst Mountainous Areas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A27%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20Optical%20Remote%20Sensing%20and%20Laser%20Point%20Cloud%20for%20Forest%20Stock%20Estimation%20in%20Karst%20Mountainous%20Areas&rft.jtitle=Forests&rft.au=Zheng,%20Jiajia&rft.date=2024-12-01&rft.volume=15&rft.issue=12&rft.spage=2106&rft.pages=2106-&rft.issn=1999-4907&rft.eissn=1999-4907&rft_id=info:doi/10.3390/f15122106&rft_dat=%3Cgale_proqu%3EA821831972%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149610647&rft_id=info:pmid/&rft_galeid=A821831972&rfr_iscdi=true