Integration of Optical Remote Sensing and Laser Point Cloud for Forest Stock Estimation in Karst Mountainous Areas
This study addresses the challenges posed by the complex topography and forest structure in karst mountainous areas, as well as the difficulties in estimating forest stock using traditional methods. We propose a method that integrates optical remote sensing data from Sentinel-2 into airborne LiDAR d...
Gespeichert in:
Veröffentlicht in: | Forests 2024-12, Vol.15 (12), p.2106 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 2106 |
container_title | Forests |
container_volume | 15 |
creator | Zheng, Jiajia Zhou, Zhongfa Zhu, Meng Wang, Jiale Wan, Jiaxue Long, Yangyang |
description | This study addresses the challenges posed by the complex topography and forest structure in karst mountainous areas, as well as the difficulties in estimating forest stock using traditional methods. We propose a method that integrates optical remote sensing data from Sentinel-2 into airborne LiDAR data to estimate forest stock in karst areas. First, an Allometric Growth Model correlating tree height and diameter at breast height (DBH) in karst areas was developed based on field measurements. Tree height information extracted from LiDAR data was then combined with the binary wood volume model specific to fir trees in Guizhou Province to calculate the individual tree biomass of fir trees. In addition, this study evaluated the robustness of three machine learning methods, the Random Forest Regression Model, K-Nearest Neighbors Regression Model, and Backpropagation Neural Network Model, in estimating forest stock in karst mountainous areas. The results indicate the following: (1) The Allometric Growth Model based on field data showed strong predictive power for DBH and can be used for large-scale estimation. (2) The distribution characteristics of individual tree biomass and plot biomass under different site conditions revealed the distribution pattern of fir trees in the study area, providing important information for understanding the growth status of forest stock in the region. (3) The Random Forest Regression Model demonstrated exceptional accuracy, generalization capability, and robustness in the estimation of forest stock within karst mountainous regions. This study provides an effective technical tool for estimating forest stock in karst areas and under complex terrain conditions and has significant scientific value and practical implications for the monitoring and management of forest ecosystem carbon sinks. |
doi_str_mv | 10.3390/f15122106 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3149610647</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821831972</galeid><sourcerecordid>A821831972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-20cfbbae7006711c455074d8a92a9b0b04e82aaa7e8fccd5ecf9e39cdff38e013</originalsourceid><addsrcrecordid>eNpNUUtPwzAMjhBITLAD_yASJw4bebRLc5ymDSaGhhicqzR1powuGUl64N8TVISwD7Zsf59fCN1QMuVckntDS8oYJbMzNKJSykkhiTj_51-icYwHkqUUlWTFCIW1S7APKlnvsDd4e0pWqw6_wtEnwDtw0bo9Vq7FGxUh4BdvXcKLzvctNj7glQ8QE94lrz_wMiZ7HLisw08q5Myz711S1vk-4nkAFa_RhVFdhPGvvULvq-Xb4nGy2T6sF_PNROcd0oQRbZpGgSBkJijVRVkSUbSVkkzJhjSkgIoppQRURuu2BG0kcKlbY3gFhPIrdDvwnoL_7POQ9cH3weWWNaeFnOU7FSJXTYeqveqgts74FJTO2sLRau_A2ByfV4xWnErBMuBuAOjgYwxg6lPIS4evmpL65w313xv4N3shenA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149610647</pqid></control><display><type>article</type><title>Integration of Optical Remote Sensing and Laser Point Cloud for Forest Stock Estimation in Karst Mountainous Areas</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zheng, Jiajia ; Zhou, Zhongfa ; Zhu, Meng ; Wang, Jiale ; Wan, Jiaxue ; Long, Yangyang</creator><creatorcontrib>Zheng, Jiajia ; Zhou, Zhongfa ; Zhu, Meng ; Wang, Jiale ; Wan, Jiaxue ; Long, Yangyang</creatorcontrib><description>This study addresses the challenges posed by the complex topography and forest structure in karst mountainous areas, as well as the difficulties in estimating forest stock using traditional methods. We propose a method that integrates optical remote sensing data from Sentinel-2 into airborne LiDAR data to estimate forest stock in karst areas. First, an Allometric Growth Model correlating tree height and diameter at breast height (DBH) in karst areas was developed based on field measurements. Tree height information extracted from LiDAR data was then combined with the binary wood volume model specific to fir trees in Guizhou Province to calculate the individual tree biomass of fir trees. In addition, this study evaluated the robustness of three machine learning methods, the Random Forest Regression Model, K-Nearest Neighbors Regression Model, and Backpropagation Neural Network Model, in estimating forest stock in karst mountainous areas. The results indicate the following: (1) The Allometric Growth Model based on field data showed strong predictive power for DBH and can be used for large-scale estimation. (2) The distribution characteristics of individual tree biomass and plot biomass under different site conditions revealed the distribution pattern of fir trees in the study area, providing important information for understanding the growth status of forest stock in the region. (3) The Random Forest Regression Model demonstrated exceptional accuracy, generalization capability, and robustness in the estimation of forest stock within karst mountainous regions. This study provides an effective technical tool for estimating forest stock in karst areas and under complex terrain conditions and has significant scientific value and practical implications for the monitoring and management of forest ecosystem carbon sinks.</description><identifier>ISSN: 1999-4907</identifier><identifier>EISSN: 1999-4907</identifier><identifier>DOI: 10.3390/f15122106</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Airborne lasers ; Back propagation networks ; Biodiversity ; Biomass ; Carbon sequestration ; Carbon sinks ; Ecosystem management ; Ecosystems ; Estimates ; Estimation ; Forest ecology ; Forest ecosystems ; Forest management ; Global positioning systems ; GPS ; Karst ; Lidar ; Machine learning ; Metabolism ; Mountain regions ; Mountainous areas ; Mountains ; Neural networks ; Optical radar ; Regression models ; Remote sensing ; Robustness ; Stocks ; Terrestrial ecosystems ; Trees ; Unmanned aerial vehicles ; Vegetation</subject><ispartof>Forests, 2024-12, Vol.15 (12), p.2106</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c221t-20cfbbae7006711c455074d8a92a9b0b04e82aaa7e8fccd5ecf9e39cdff38e013</cites><orcidid>0009-0001-5863-348X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zheng, Jiajia</creatorcontrib><creatorcontrib>Zhou, Zhongfa</creatorcontrib><creatorcontrib>Zhu, Meng</creatorcontrib><creatorcontrib>Wang, Jiale</creatorcontrib><creatorcontrib>Wan, Jiaxue</creatorcontrib><creatorcontrib>Long, Yangyang</creatorcontrib><title>Integration of Optical Remote Sensing and Laser Point Cloud for Forest Stock Estimation in Karst Mountainous Areas</title><title>Forests</title><description>This study addresses the challenges posed by the complex topography and forest structure in karst mountainous areas, as well as the difficulties in estimating forest stock using traditional methods. We propose a method that integrates optical remote sensing data from Sentinel-2 into airborne LiDAR data to estimate forest stock in karst areas. First, an Allometric Growth Model correlating tree height and diameter at breast height (DBH) in karst areas was developed based on field measurements. Tree height information extracted from LiDAR data was then combined with the binary wood volume model specific to fir trees in Guizhou Province to calculate the individual tree biomass of fir trees. In addition, this study evaluated the robustness of three machine learning methods, the Random Forest Regression Model, K-Nearest Neighbors Regression Model, and Backpropagation Neural Network Model, in estimating forest stock in karst mountainous areas. The results indicate the following: (1) The Allometric Growth Model based on field data showed strong predictive power for DBH and can be used for large-scale estimation. (2) The distribution characteristics of individual tree biomass and plot biomass under different site conditions revealed the distribution pattern of fir trees in the study area, providing important information for understanding the growth status of forest stock in the region. (3) The Random Forest Regression Model demonstrated exceptional accuracy, generalization capability, and robustness in the estimation of forest stock within karst mountainous regions. This study provides an effective technical tool for estimating forest stock in karst areas and under complex terrain conditions and has significant scientific value and practical implications for the monitoring and management of forest ecosystem carbon sinks.</description><subject>Accuracy</subject><subject>Airborne lasers</subject><subject>Back propagation networks</subject><subject>Biodiversity</subject><subject>Biomass</subject><subject>Carbon sequestration</subject><subject>Carbon sinks</subject><subject>Ecosystem management</subject><subject>Ecosystems</subject><subject>Estimates</subject><subject>Estimation</subject><subject>Forest ecology</subject><subject>Forest ecosystems</subject><subject>Forest management</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Karst</subject><subject>Lidar</subject><subject>Machine learning</subject><subject>Metabolism</subject><subject>Mountain regions</subject><subject>Mountainous areas</subject><subject>Mountains</subject><subject>Neural networks</subject><subject>Optical radar</subject><subject>Regression models</subject><subject>Remote sensing</subject><subject>Robustness</subject><subject>Stocks</subject><subject>Terrestrial ecosystems</subject><subject>Trees</subject><subject>Unmanned aerial vehicles</subject><subject>Vegetation</subject><issn>1999-4907</issn><issn>1999-4907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNUUtPwzAMjhBITLAD_yASJw4bebRLc5ymDSaGhhicqzR1powuGUl64N8TVISwD7Zsf59fCN1QMuVckntDS8oYJbMzNKJSykkhiTj_51-icYwHkqUUlWTFCIW1S7APKlnvsDd4e0pWqw6_wtEnwDtw0bo9Vq7FGxUh4BdvXcKLzvctNj7glQ8QE94lrz_wMiZ7HLisw08q5Myz711S1vk-4nkAFa_RhVFdhPGvvULvq-Xb4nGy2T6sF_PNROcd0oQRbZpGgSBkJijVRVkSUbSVkkzJhjSkgIoppQRURuu2BG0kcKlbY3gFhPIrdDvwnoL_7POQ9cH3weWWNaeFnOU7FSJXTYeqveqgts74FJTO2sLRau_A2ByfV4xWnErBMuBuAOjgYwxg6lPIS4evmpL65w313xv4N3shenA</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Zheng, Jiajia</creator><creator>Zhou, Zhongfa</creator><creator>Zhu, Meng</creator><creator>Wang, Jiale</creator><creator>Wan, Jiaxue</creator><creator>Long, Yangyang</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7X2</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0009-0001-5863-348X</orcidid></search><sort><creationdate>20241201</creationdate><title>Integration of Optical Remote Sensing and Laser Point Cloud for Forest Stock Estimation in Karst Mountainous Areas</title><author>Zheng, Jiajia ; Zhou, Zhongfa ; Zhu, Meng ; Wang, Jiale ; Wan, Jiaxue ; Long, Yangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-20cfbbae7006711c455074d8a92a9b0b04e82aaa7e8fccd5ecf9e39cdff38e013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Airborne lasers</topic><topic>Back propagation networks</topic><topic>Biodiversity</topic><topic>Biomass</topic><topic>Carbon sequestration</topic><topic>Carbon sinks</topic><topic>Ecosystem management</topic><topic>Ecosystems</topic><topic>Estimates</topic><topic>Estimation</topic><topic>Forest ecology</topic><topic>Forest ecosystems</topic><topic>Forest management</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Karst</topic><topic>Lidar</topic><topic>Machine learning</topic><topic>Metabolism</topic><topic>Mountain regions</topic><topic>Mountainous areas</topic><topic>Mountains</topic><topic>Neural networks</topic><topic>Optical radar</topic><topic>Regression models</topic><topic>Remote sensing</topic><topic>Robustness</topic><topic>Stocks</topic><topic>Terrestrial ecosystems</topic><topic>Trees</topic><topic>Unmanned aerial vehicles</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Jiajia</creatorcontrib><creatorcontrib>Zhou, Zhongfa</creatorcontrib><creatorcontrib>Zhu, Meng</creatorcontrib><creatorcontrib>Wang, Jiale</creatorcontrib><creatorcontrib>Wan, Jiaxue</creatorcontrib><creatorcontrib>Long, Yangyang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>Forests</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Jiajia</au><au>Zhou, Zhongfa</au><au>Zhu, Meng</au><au>Wang, Jiale</au><au>Wan, Jiaxue</au><au>Long, Yangyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of Optical Remote Sensing and Laser Point Cloud for Forest Stock Estimation in Karst Mountainous Areas</atitle><jtitle>Forests</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>15</volume><issue>12</issue><spage>2106</spage><pages>2106-</pages><issn>1999-4907</issn><eissn>1999-4907</eissn><abstract>This study addresses the challenges posed by the complex topography and forest structure in karst mountainous areas, as well as the difficulties in estimating forest stock using traditional methods. We propose a method that integrates optical remote sensing data from Sentinel-2 into airborne LiDAR data to estimate forest stock in karst areas. First, an Allometric Growth Model correlating tree height and diameter at breast height (DBH) in karst areas was developed based on field measurements. Tree height information extracted from LiDAR data was then combined with the binary wood volume model specific to fir trees in Guizhou Province to calculate the individual tree biomass of fir trees. In addition, this study evaluated the robustness of three machine learning methods, the Random Forest Regression Model, K-Nearest Neighbors Regression Model, and Backpropagation Neural Network Model, in estimating forest stock in karst mountainous areas. The results indicate the following: (1) The Allometric Growth Model based on field data showed strong predictive power for DBH and can be used for large-scale estimation. (2) The distribution characteristics of individual tree biomass and plot biomass under different site conditions revealed the distribution pattern of fir trees in the study area, providing important information for understanding the growth status of forest stock in the region. (3) The Random Forest Regression Model demonstrated exceptional accuracy, generalization capability, and robustness in the estimation of forest stock within karst mountainous regions. This study provides an effective technical tool for estimating forest stock in karst areas and under complex terrain conditions and has significant scientific value and practical implications for the monitoring and management of forest ecosystem carbon sinks.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/f15122106</doi><orcidid>https://orcid.org/0009-0001-5863-348X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1999-4907 |
ispartof | Forests, 2024-12, Vol.15 (12), p.2106 |
issn | 1999-4907 1999-4907 |
language | eng |
recordid | cdi_proquest_journals_3149610647 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Airborne lasers Back propagation networks Biodiversity Biomass Carbon sequestration Carbon sinks Ecosystem management Ecosystems Estimates Estimation Forest ecology Forest ecosystems Forest management Global positioning systems GPS Karst Lidar Machine learning Metabolism Mountain regions Mountainous areas Mountains Neural networks Optical radar Regression models Remote sensing Robustness Stocks Terrestrial ecosystems Trees Unmanned aerial vehicles Vegetation |
title | Integration of Optical Remote Sensing and Laser Point Cloud for Forest Stock Estimation in Karst Mountainous Areas |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A27%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20Optical%20Remote%20Sensing%20and%20Laser%20Point%20Cloud%20for%20Forest%20Stock%20Estimation%20in%20Karst%20Mountainous%20Areas&rft.jtitle=Forests&rft.au=Zheng,%20Jiajia&rft.date=2024-12-01&rft.volume=15&rft.issue=12&rft.spage=2106&rft.pages=2106-&rft.issn=1999-4907&rft.eissn=1999-4907&rft_id=info:doi/10.3390/f15122106&rft_dat=%3Cgale_proqu%3EA821831972%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149610647&rft_id=info:pmid/&rft_galeid=A821831972&rfr_iscdi=true |