BATG: A Backdoor Attack Method Based on Trigger Generation
Backdoor attacks aim to implant hidden backdoors into Deep Neural Networks (DNNs) so that the victim models perform well on clean images, whereas their predictions would be maliciously changed on poisoned images. However, most existing backdoor attacks lack the invisibility and robustness required f...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2024-12, Vol.13 (24), p.5031 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | 5031 |
container_title | Electronics (Basel) |
container_volume | 13 |
creator | Tang, Weixuan Xie, Haoke Rao, Yuan Long, Min Qi, Tao Zhou, Zhili |
description | Backdoor attacks aim to implant hidden backdoors into Deep Neural Networks (DNNs) so that the victim models perform well on clean images, whereas their predictions would be maliciously changed on poisoned images. However, most existing backdoor attacks lack the invisibility and robustness required for real-world applications, especially when it comes to resisting image compression techniques, such as JPEG and WEBP. To address these issues, in this paper, we propose a Backdoor Attack Method based on Trigger Generation (BATG). Specifically, a deep convolutional generative network is utilized as the trigger generation model to generate effective trigger images and an Invertible Neural Network (INN) is utilized as the trigger injection model to embed the generated trigger images into clean images to create poisoned images. Furthermore, a noise layer is used to simulate image compression attacks for adversarial training, enhancing the robustness against real-world image compression. Comprehensive experiments on benchmark datasets demonstrate the effectiveness, invisibility, and robustness of the proposed BATG. |
doi_str_mv | 10.3390/electronics13245031 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_3149604721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821763398</galeid><sourcerecordid>A821763398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c241t-94370149c1d9cd9259fc514131916d85f19ba6db36d0d5e14a27489e0c657ddb3</originalsourceid><addsrcrecordid>eNptULtOAzEQtBBIRCFfQHMS9QWv7Xs43SWCgBREE-qTY-8Fh8QOtlPw9xiFgoLdYkejmVlpCLkFOuVc0nvco07BO6sjcCYqyuGCjBhtZCmZZJd_8DWZxLijeSTwltMRmc279XJWdMVc6Q_jfSi6lDIsXjC9e5PpiKbwrlgHu91iKJboMKhkvbshV4PaR5z83jF5e3xYL57K1evyedGtSs0EpFIK3lAQUoOR2khWyUFXIICDhNq01QByo2qz4bWhpkIQijWilUh1XTUm82Nyd849Bv95wpj6nT8Fl1_2POfWVDQMsmp6Vm3VHnvrBp-C0nkNHqz2Dgeb-a5l0NS5tjYb-Nmgg48x4NAfgz2o8NUD7X-K7f8pln8DhZRrRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149604721</pqid></control><display><type>article</type><title>BATG: A Backdoor Attack Method Based on Trigger Generation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tang, Weixuan ; Xie, Haoke ; Rao, Yuan ; Long, Min ; Qi, Tao ; Zhou, Zhili</creator><creatorcontrib>Tang, Weixuan ; Xie, Haoke ; Rao, Yuan ; Long, Min ; Qi, Tao ; Zhou, Zhili</creatorcontrib><description>Backdoor attacks aim to implant hidden backdoors into Deep Neural Networks (DNNs) so that the victim models perform well on clean images, whereas their predictions would be maliciously changed on poisoned images. However, most existing backdoor attacks lack the invisibility and robustness required for real-world applications, especially when it comes to resisting image compression techniques, such as JPEG and WEBP. To address these issues, in this paper, we propose a Backdoor Attack Method based on Trigger Generation (BATG). Specifically, a deep convolutional generative network is utilized as the trigger generation model to generate effective trigger images and an Invertible Neural Network (INN) is utilized as the trigger injection model to embed the generated trigger images into clean images to create poisoned images. Furthermore, a noise layer is used to simulate image compression attacks for adversarial training, enhancing the robustness against real-world image compression. Comprehensive experiments on benchmark datasets demonstrate the effectiveness, invisibility, and robustness of the proposed BATG.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics13245031</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial neural networks ; Effectiveness ; Image compression ; Methods ; Neural networks ; Performance evaluation ; Robustness ; Visibility</subject><ispartof>Electronics (Basel), 2024-12, Vol.13 (24), p.5031</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c241t-94370149c1d9cd9259fc514131916d85f19ba6db36d0d5e14a27489e0c657ddb3</cites><orcidid>0000-0002-4082-1140 ; 0000-0002-3150-5103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Tang, Weixuan</creatorcontrib><creatorcontrib>Xie, Haoke</creatorcontrib><creatorcontrib>Rao, Yuan</creatorcontrib><creatorcontrib>Long, Min</creatorcontrib><creatorcontrib>Qi, Tao</creatorcontrib><creatorcontrib>Zhou, Zhili</creatorcontrib><title>BATG: A Backdoor Attack Method Based on Trigger Generation</title><title>Electronics (Basel)</title><description>Backdoor attacks aim to implant hidden backdoors into Deep Neural Networks (DNNs) so that the victim models perform well on clean images, whereas their predictions would be maliciously changed on poisoned images. However, most existing backdoor attacks lack the invisibility and robustness required for real-world applications, especially when it comes to resisting image compression techniques, such as JPEG and WEBP. To address these issues, in this paper, we propose a Backdoor Attack Method based on Trigger Generation (BATG). Specifically, a deep convolutional generative network is utilized as the trigger generation model to generate effective trigger images and an Invertible Neural Network (INN) is utilized as the trigger injection model to embed the generated trigger images into clean images to create poisoned images. Furthermore, a noise layer is used to simulate image compression attacks for adversarial training, enhancing the robustness against real-world image compression. Comprehensive experiments on benchmark datasets demonstrate the effectiveness, invisibility, and robustness of the proposed BATG.</description><subject>Artificial neural networks</subject><subject>Effectiveness</subject><subject>Image compression</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Robustness</subject><subject>Visibility</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNptULtOAzEQtBBIRCFfQHMS9QWv7Xs43SWCgBREE-qTY-8Fh8QOtlPw9xiFgoLdYkejmVlpCLkFOuVc0nvco07BO6sjcCYqyuGCjBhtZCmZZJd_8DWZxLijeSTwltMRmc279XJWdMVc6Q_jfSi6lDIsXjC9e5PpiKbwrlgHu91iKJboMKhkvbshV4PaR5z83jF5e3xYL57K1evyedGtSs0EpFIK3lAQUoOR2khWyUFXIICDhNq01QByo2qz4bWhpkIQijWilUh1XTUm82Nyd849Bv95wpj6nT8Fl1_2POfWVDQMsmp6Vm3VHnvrBp-C0nkNHqz2Dgeb-a5l0NS5tjYb-Nmgg48x4NAfgz2o8NUD7X-K7f8pln8DhZRrRQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Tang, Weixuan</creator><creator>Xie, Haoke</creator><creator>Rao, Yuan</creator><creator>Long, Min</creator><creator>Qi, Tao</creator><creator>Zhou, Zhili</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-4082-1140</orcidid><orcidid>https://orcid.org/0000-0002-3150-5103</orcidid></search><sort><creationdate>20241201</creationdate><title>BATG: A Backdoor Attack Method Based on Trigger Generation</title><author>Tang, Weixuan ; Xie, Haoke ; Rao, Yuan ; Long, Min ; Qi, Tao ; Zhou, Zhili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c241t-94370149c1d9cd9259fc514131916d85f19ba6db36d0d5e14a27489e0c657ddb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Effectiveness</topic><topic>Image compression</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Robustness</topic><topic>Visibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Weixuan</creatorcontrib><creatorcontrib>Xie, Haoke</creatorcontrib><creatorcontrib>Rao, Yuan</creatorcontrib><creatorcontrib>Long, Min</creatorcontrib><creatorcontrib>Qi, Tao</creatorcontrib><creatorcontrib>Zhou, Zhili</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Weixuan</au><au>Xie, Haoke</au><au>Rao, Yuan</au><au>Long, Min</au><au>Qi, Tao</au><au>Zhou, Zhili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BATG: A Backdoor Attack Method Based on Trigger Generation</atitle><jtitle>Electronics (Basel)</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>13</volume><issue>24</issue><spage>5031</spage><pages>5031-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Backdoor attacks aim to implant hidden backdoors into Deep Neural Networks (DNNs) so that the victim models perform well on clean images, whereas their predictions would be maliciously changed on poisoned images. However, most existing backdoor attacks lack the invisibility and robustness required for real-world applications, especially when it comes to resisting image compression techniques, such as JPEG and WEBP. To address these issues, in this paper, we propose a Backdoor Attack Method based on Trigger Generation (BATG). Specifically, a deep convolutional generative network is utilized as the trigger generation model to generate effective trigger images and an Invertible Neural Network (INN) is utilized as the trigger injection model to embed the generated trigger images into clean images to create poisoned images. Furthermore, a noise layer is used to simulate image compression attacks for adversarial training, enhancing the robustness against real-world image compression. Comprehensive experiments on benchmark datasets demonstrate the effectiveness, invisibility, and robustness of the proposed BATG.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics13245031</doi><orcidid>https://orcid.org/0000-0002-4082-1140</orcidid><orcidid>https://orcid.org/0000-0002-3150-5103</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2024-12, Vol.13 (24), p.5031 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_3149604721 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial neural networks Effectiveness Image compression Methods Neural networks Performance evaluation Robustness Visibility |
title | BATG: A Backdoor Attack Method Based on Trigger Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A16%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BATG:%20A%20Backdoor%20Attack%20Method%20Based%20on%20Trigger%20Generation&rft.jtitle=Electronics%20(Basel)&rft.au=Tang,%20Weixuan&rft.date=2024-12-01&rft.volume=13&rft.issue=24&rft.spage=5031&rft.pages=5031-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics13245031&rft_dat=%3Cgale_proqu%3EA821763398%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149604721&rft_id=info:pmid/&rft_galeid=A821763398&rfr_iscdi=true |