Exploring the Epigenetic Landscape of Spermatozoa: Impact of Oxidative Stress and Antioxidant Supplementation on DNA Methylation and Hydroxymethylation
Reproductive success is dependent on gamete integrity, and oxidative stress alters male nuclei, meaning that no DNA repair is possible due to chromatin compaction. The composition of sperm makes it highly sensitive to reactive oxygen species (ROS) but, at the same time, ROS are needed for sperm phys...
Gespeichert in:
Veröffentlicht in: | Antioxidants 2024-12, Vol.13 (12), p.1520 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 1520 |
container_title | Antioxidants |
container_volume | 13 |
creator | Hug, Elisa Renaud, Yoan Guiton, Rachel Ben Sassi, Mehdi Marcaillou, Charles Moazamian, Aron Gharagozloo, Parviz Drevet, Joël R Saez, Fabrice |
description | Reproductive success is dependent on gamete integrity, and oxidative stress alters male nuclei, meaning that no DNA repair is possible due to chromatin compaction. The composition of sperm makes it highly sensitive to reactive oxygen species (ROS) but, at the same time, ROS are needed for sperm physiology. Over the past 30 years, much attention has been paid to the consequences of oxidative stress on sperm properties and the protective effects of antioxidant formulations to help fertility. Spermatozoa also carry epigenetic marks, critical for embryo development and the health of offspring. As DNA oxidative damage may disturb the sperm epigenome, we used an established mouse model of post-testicular sperm DNA oxidation to investigate sperm DNA methylation and hydroxymethylation. We also analyzed the potential corrective effect of oral antioxidant supplementation, proven to reduce sperm DNA oxidative damage, on sperm DNA methyl/hydroxymethyl marks. We show that sperm DNA oxidation is associated with a significant increase in overall hydroxymethylation. Oral antioxidant supplementation led to unexpected mild epigenetic changes. Antioxidant supplementation should not be proposed without proper clinical evaluation as it may alter sperm epigenetic marks, leading to a risk of paternally inherited epigenetic alterations. |
doi_str_mv | 10.3390/antiox13121520 |
format | Article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3149499612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821600245</galeid><doaj_id>oai_doaj_org_article_5690e0dc36ab4d65bc0ede635a05f2da</doaj_id><sourcerecordid>A821600245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-de42b552976a6aff46d06b4af10f3ef5296da7fc052774aa72dfa50f5b6603163</originalsourceid><addsrcrecordid>eNptUk1vEzEUXCEQrUqvHJElLlxS_LH2ZrmgqA00UqCHwNl664_E0a69eJ0q4Y_wd3Ga0jao65VszZsZe55eUbwl-IKxGn8En1zYEkYo4RS_KE4prsSI1ZS8fHI-Kc6HYY3zVxM2xvXr4oTVleDjcnxa_Jlu-zZE55corQya9m5pvElOoTl4PSjoDQoWLXoTO0jhd4BPaNb1oNIevtk6DcndGrRI0QwDyho0uXtVLviEFpu-b01nfMq04FH-r75P0DeTVrv2AO0l1zsdw3bXPcJvilcW2sGc3-9nxc8v0x-X16P5zdfZ5WQ-UiWr0kibkjac05wHBFhbCo1FU4Il2DJjc0FoqKzCnFZVCVBRbYFjyxshMCOCnRWzg68OsJZ9dB3EnQzg5B0Q4lJCzO1ojeSixgZrxQQ0pRa8UdhoIxgHzC3VkL0-H7z6TdMZrXLqCO2R6XHFu5VchltJSEXFuKbZ4cO9Qwy_NmZIsnODMm0L3oTNIBnhnHFRjatMff8fdR020edeZVZZl3UtCH1kLSEncN6GfLHam8rJmBKBMS15Zl08w8pLm86p4I11GX9OoGIYhmjsQ0iC5X405fFoZsG7p615oP8bRPYXVmviVg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149499612</pqid></control><display><type>article</type><title>Exploring the Epigenetic Landscape of Spermatozoa: Impact of Oxidative Stress and Antioxidant Supplementation on DNA Methylation and Hydroxymethylation</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Hug, Elisa ; Renaud, Yoan ; Guiton, Rachel ; Ben Sassi, Mehdi ; Marcaillou, Charles ; Moazamian, Aron ; Gharagozloo, Parviz ; Drevet, Joël R ; Saez, Fabrice</creator><creatorcontrib>Hug, Elisa ; Renaud, Yoan ; Guiton, Rachel ; Ben Sassi, Mehdi ; Marcaillou, Charles ; Moazamian, Aron ; Gharagozloo, Parviz ; Drevet, Joël R ; Saez, Fabrice</creatorcontrib><description>Reproductive success is dependent on gamete integrity, and oxidative stress alters male nuclei, meaning that no DNA repair is possible due to chromatin compaction. The composition of sperm makes it highly sensitive to reactive oxygen species (ROS) but, at the same time, ROS are needed for sperm physiology. Over the past 30 years, much attention has been paid to the consequences of oxidative stress on sperm properties and the protective effects of antioxidant formulations to help fertility. Spermatozoa also carry epigenetic marks, critical for embryo development and the health of offspring. As DNA oxidative damage may disturb the sperm epigenome, we used an established mouse model of post-testicular sperm DNA oxidation to investigate sperm DNA methylation and hydroxymethylation. We also analyzed the potential corrective effect of oral antioxidant supplementation, proven to reduce sperm DNA oxidative damage, on sperm DNA methyl/hydroxymethyl marks. We show that sperm DNA oxidation is associated with a significant increase in overall hydroxymethylation. Oral antioxidant supplementation led to unexpected mild epigenetic changes. Antioxidant supplementation should not be proposed without proper clinical evaluation as it may alter sperm epigenetic marks, leading to a risk of paternally inherited epigenetic alterations.</description><identifier>ISSN: 2076-3921</identifier><identifier>EISSN: 2076-3921</identifier><identifier>DOI: 10.3390/antiox13121520</identifier><identifier>PMID: 39765848</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animals ; Antibodies ; antioxidant ; Antioxidants ; Chromatin ; Dietary supplements ; DNA ; DNA damage ; DNA hydroxymethylation ; DNA methylation ; DNA repair ; Embryonic development ; epigenetic ; Epigenetic inheritance ; Epigenetics ; Ethylenediaminetetraacetic acid ; Fertility ; Genetic testing ; Genomes ; male fertility ; Metabolism ; Methylation ; Oxidative stress ; Physiological aspects ; Reactive oxygen species ; Sperm ; Spermatogenesis ; Spermatozoa</subject><ispartof>Antioxidants, 2024-12, Vol.13 (12), p.1520</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c437t-de42b552976a6aff46d06b4af10f3ef5296da7fc052774aa72dfa50f5b6603163</cites><orcidid>0000-0003-3077-6558 ; 0000-0002-4036-8315 ; 0000-0001-9570-3777 ; 0000-0002-1291-4390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726892/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726892/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39765848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hug, Elisa</creatorcontrib><creatorcontrib>Renaud, Yoan</creatorcontrib><creatorcontrib>Guiton, Rachel</creatorcontrib><creatorcontrib>Ben Sassi, Mehdi</creatorcontrib><creatorcontrib>Marcaillou, Charles</creatorcontrib><creatorcontrib>Moazamian, Aron</creatorcontrib><creatorcontrib>Gharagozloo, Parviz</creatorcontrib><creatorcontrib>Drevet, Joël R</creatorcontrib><creatorcontrib>Saez, Fabrice</creatorcontrib><title>Exploring the Epigenetic Landscape of Spermatozoa: Impact of Oxidative Stress and Antioxidant Supplementation on DNA Methylation and Hydroxymethylation</title><title>Antioxidants</title><addtitle>Antioxidants (Basel)</addtitle><description>Reproductive success is dependent on gamete integrity, and oxidative stress alters male nuclei, meaning that no DNA repair is possible due to chromatin compaction. The composition of sperm makes it highly sensitive to reactive oxygen species (ROS) but, at the same time, ROS are needed for sperm physiology. Over the past 30 years, much attention has been paid to the consequences of oxidative stress on sperm properties and the protective effects of antioxidant formulations to help fertility. Spermatozoa also carry epigenetic marks, critical for embryo development and the health of offspring. As DNA oxidative damage may disturb the sperm epigenome, we used an established mouse model of post-testicular sperm DNA oxidation to investigate sperm DNA methylation and hydroxymethylation. We also analyzed the potential corrective effect of oral antioxidant supplementation, proven to reduce sperm DNA oxidative damage, on sperm DNA methyl/hydroxymethyl marks. We show that sperm DNA oxidation is associated with a significant increase in overall hydroxymethylation. Oral antioxidant supplementation led to unexpected mild epigenetic changes. Antioxidant supplementation should not be proposed without proper clinical evaluation as it may alter sperm epigenetic marks, leading to a risk of paternally inherited epigenetic alterations.</description><subject>Animals</subject><subject>Antibodies</subject><subject>antioxidant</subject><subject>Antioxidants</subject><subject>Chromatin</subject><subject>Dietary supplements</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA hydroxymethylation</subject><subject>DNA methylation</subject><subject>DNA repair</subject><subject>Embryonic development</subject><subject>epigenetic</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Ethylenediaminetetraacetic acid</subject><subject>Fertility</subject><subject>Genetic testing</subject><subject>Genomes</subject><subject>male fertility</subject><subject>Metabolism</subject><subject>Methylation</subject><subject>Oxidative stress</subject><subject>Physiological aspects</subject><subject>Reactive oxygen species</subject><subject>Sperm</subject><subject>Spermatogenesis</subject><subject>Spermatozoa</subject><issn>2076-3921</issn><issn>2076-3921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1vEzEUXCEQrUqvHJElLlxS_LH2ZrmgqA00UqCHwNl664_E0a69eJ0q4Y_wd3Ga0jao65VszZsZe55eUbwl-IKxGn8En1zYEkYo4RS_KE4prsSI1ZS8fHI-Kc6HYY3zVxM2xvXr4oTVleDjcnxa_Jlu-zZE55corQya9m5pvElOoTl4PSjoDQoWLXoTO0jhd4BPaNb1oNIevtk6DcndGrRI0QwDyho0uXtVLviEFpu-b01nfMq04FH-r75P0DeTVrv2AO0l1zsdw3bXPcJvilcW2sGc3-9nxc8v0x-X16P5zdfZ5WQ-UiWr0kibkjac05wHBFhbCo1FU4Il2DJjc0FoqKzCnFZVCVBRbYFjyxshMCOCnRWzg68OsJZ9dB3EnQzg5B0Q4lJCzO1ojeSixgZrxQQ0pRa8UdhoIxgHzC3VkL0-H7z6TdMZrXLqCO2R6XHFu5VchltJSEXFuKbZ4cO9Qwy_NmZIsnODMm0L3oTNIBnhnHFRjatMff8fdR020edeZVZZl3UtCH1kLSEncN6GfLHam8rJmBKBMS15Zl08w8pLm86p4I11GX9OoGIYhmjsQ0iC5X405fFoZsG7p615oP8bRPYXVmviVg</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>Hug, Elisa</creator><creator>Renaud, Yoan</creator><creator>Guiton, Rachel</creator><creator>Ben Sassi, Mehdi</creator><creator>Marcaillou, Charles</creator><creator>Moazamian, Aron</creator><creator>Gharagozloo, Parviz</creator><creator>Drevet, Joël R</creator><creator>Saez, Fabrice</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7T5</scope><scope>7TO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3077-6558</orcidid><orcidid>https://orcid.org/0000-0002-4036-8315</orcidid><orcidid>https://orcid.org/0000-0001-9570-3777</orcidid><orcidid>https://orcid.org/0000-0002-1291-4390</orcidid></search><sort><creationdate>20241212</creationdate><title>Exploring the Epigenetic Landscape of Spermatozoa: Impact of Oxidative Stress and Antioxidant Supplementation on DNA Methylation and Hydroxymethylation</title><author>Hug, Elisa ; Renaud, Yoan ; Guiton, Rachel ; Ben Sassi, Mehdi ; Marcaillou, Charles ; Moazamian, Aron ; Gharagozloo, Parviz ; Drevet, Joël R ; Saez, Fabrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-de42b552976a6aff46d06b4af10f3ef5296da7fc052774aa72dfa50f5b6603163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>antioxidant</topic><topic>Antioxidants</topic><topic>Chromatin</topic><topic>Dietary supplements</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA hydroxymethylation</topic><topic>DNA methylation</topic><topic>DNA repair</topic><topic>Embryonic development</topic><topic>epigenetic</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Ethylenediaminetetraacetic acid</topic><topic>Fertility</topic><topic>Genetic testing</topic><topic>Genomes</topic><topic>male fertility</topic><topic>Metabolism</topic><topic>Methylation</topic><topic>Oxidative stress</topic><topic>Physiological aspects</topic><topic>Reactive oxygen species</topic><topic>Sperm</topic><topic>Spermatogenesis</topic><topic>Spermatozoa</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hug, Elisa</creatorcontrib><creatorcontrib>Renaud, Yoan</creatorcontrib><creatorcontrib>Guiton, Rachel</creatorcontrib><creatorcontrib>Ben Sassi, Mehdi</creatorcontrib><creatorcontrib>Marcaillou, Charles</creatorcontrib><creatorcontrib>Moazamian, Aron</creatorcontrib><creatorcontrib>Gharagozloo, Parviz</creatorcontrib><creatorcontrib>Drevet, Joël R</creatorcontrib><creatorcontrib>Saez, Fabrice</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Antioxidants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hug, Elisa</au><au>Renaud, Yoan</au><au>Guiton, Rachel</au><au>Ben Sassi, Mehdi</au><au>Marcaillou, Charles</au><au>Moazamian, Aron</au><au>Gharagozloo, Parviz</au><au>Drevet, Joël R</au><au>Saez, Fabrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Epigenetic Landscape of Spermatozoa: Impact of Oxidative Stress and Antioxidant Supplementation on DNA Methylation and Hydroxymethylation</atitle><jtitle>Antioxidants</jtitle><addtitle>Antioxidants (Basel)</addtitle><date>2024-12-12</date><risdate>2024</risdate><volume>13</volume><issue>12</issue><spage>1520</spage><pages>1520-</pages><issn>2076-3921</issn><eissn>2076-3921</eissn><abstract>Reproductive success is dependent on gamete integrity, and oxidative stress alters male nuclei, meaning that no DNA repair is possible due to chromatin compaction. The composition of sperm makes it highly sensitive to reactive oxygen species (ROS) but, at the same time, ROS are needed for sperm physiology. Over the past 30 years, much attention has been paid to the consequences of oxidative stress on sperm properties and the protective effects of antioxidant formulations to help fertility. Spermatozoa also carry epigenetic marks, critical for embryo development and the health of offspring. As DNA oxidative damage may disturb the sperm epigenome, we used an established mouse model of post-testicular sperm DNA oxidation to investigate sperm DNA methylation and hydroxymethylation. We also analyzed the potential corrective effect of oral antioxidant supplementation, proven to reduce sperm DNA oxidative damage, on sperm DNA methyl/hydroxymethyl marks. We show that sperm DNA oxidation is associated with a significant increase in overall hydroxymethylation. Oral antioxidant supplementation led to unexpected mild epigenetic changes. Antioxidant supplementation should not be proposed without proper clinical evaluation as it may alter sperm epigenetic marks, leading to a risk of paternally inherited epigenetic alterations.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39765848</pmid><doi>10.3390/antiox13121520</doi><orcidid>https://orcid.org/0000-0003-3077-6558</orcidid><orcidid>https://orcid.org/0000-0002-4036-8315</orcidid><orcidid>https://orcid.org/0000-0001-9570-3777</orcidid><orcidid>https://orcid.org/0000-0002-1291-4390</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3921 |
ispartof | Antioxidants, 2024-12, Vol.13 (12), p.1520 |
issn | 2076-3921 2076-3921 |
language | eng |
recordid | cdi_proquest_journals_3149499612 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central |
subjects | Animals Antibodies antioxidant Antioxidants Chromatin Dietary supplements DNA DNA damage DNA hydroxymethylation DNA methylation DNA repair Embryonic development epigenetic Epigenetic inheritance Epigenetics Ethylenediaminetetraacetic acid Fertility Genetic testing Genomes male fertility Metabolism Methylation Oxidative stress Physiological aspects Reactive oxygen species Sperm Spermatogenesis Spermatozoa |
title | Exploring the Epigenetic Landscape of Spermatozoa: Impact of Oxidative Stress and Antioxidant Supplementation on DNA Methylation and Hydroxymethylation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Epigenetic%20Landscape%20of%20Spermatozoa:%20Impact%20of%20Oxidative%20Stress%20and%20Antioxidant%20Supplementation%20on%20DNA%20Methylation%20and%20Hydroxymethylation&rft.jtitle=Antioxidants&rft.au=Hug,%20Elisa&rft.date=2024-12-12&rft.volume=13&rft.issue=12&rft.spage=1520&rft.pages=1520-&rft.issn=2076-3921&rft.eissn=2076-3921&rft_id=info:doi/10.3390/antiox13121520&rft_dat=%3Cgale_doaj_%3EA821600245%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149499612&rft_id=info:pmid/39765848&rft_galeid=A821600245&rft_doaj_id=oai_doaj_org_article_5690e0dc36ab4d65bc0ede635a05f2da&rfr_iscdi=true |