Exploring the Epigenetic Landscape of Spermatozoa: Impact of Oxidative Stress and Antioxidant Supplementation on DNA Methylation and Hydroxymethylation

Reproductive success is dependent on gamete integrity, and oxidative stress alters male nuclei, meaning that no DNA repair is possible due to chromatin compaction. The composition of sperm makes it highly sensitive to reactive oxygen species (ROS) but, at the same time, ROS are needed for sperm phys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants 2024-12, Vol.13 (12), p.1520
Hauptverfasser: Hug, Elisa, Renaud, Yoan, Guiton, Rachel, Ben Sassi, Mehdi, Marcaillou, Charles, Moazamian, Aron, Gharagozloo, Parviz, Drevet, Joël R, Saez, Fabrice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 1520
container_title Antioxidants
container_volume 13
creator Hug, Elisa
Renaud, Yoan
Guiton, Rachel
Ben Sassi, Mehdi
Marcaillou, Charles
Moazamian, Aron
Gharagozloo, Parviz
Drevet, Joël R
Saez, Fabrice
description Reproductive success is dependent on gamete integrity, and oxidative stress alters male nuclei, meaning that no DNA repair is possible due to chromatin compaction. The composition of sperm makes it highly sensitive to reactive oxygen species (ROS) but, at the same time, ROS are needed for sperm physiology. Over the past 30 years, much attention has been paid to the consequences of oxidative stress on sperm properties and the protective effects of antioxidant formulations to help fertility. Spermatozoa also carry epigenetic marks, critical for embryo development and the health of offspring. As DNA oxidative damage may disturb the sperm epigenome, we used an established mouse model of post-testicular sperm DNA oxidation to investigate sperm DNA methylation and hydroxymethylation. We also analyzed the potential corrective effect of oral antioxidant supplementation, proven to reduce sperm DNA oxidative damage, on sperm DNA methyl/hydroxymethyl marks. We show that sperm DNA oxidation is associated with a significant increase in overall hydroxymethylation. Oral antioxidant supplementation led to unexpected mild epigenetic changes. Antioxidant supplementation should not be proposed without proper clinical evaluation as it may alter sperm epigenetic marks, leading to a risk of paternally inherited epigenetic alterations.
doi_str_mv 10.3390/antiox13121520
format Article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3149499612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821600245</galeid><doaj_id>oai_doaj_org_article_5690e0dc36ab4d65bc0ede635a05f2da</doaj_id><sourcerecordid>A821600245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-de42b552976a6aff46d06b4af10f3ef5296da7fc052774aa72dfa50f5b6603163</originalsourceid><addsrcrecordid>eNptUk1vEzEUXCEQrUqvHJElLlxS_LH2ZrmgqA00UqCHwNl664_E0a69eJ0q4Y_wd3Ga0jao65VszZsZe55eUbwl-IKxGn8En1zYEkYo4RS_KE4prsSI1ZS8fHI-Kc6HYY3zVxM2xvXr4oTVleDjcnxa_Jlu-zZE55corQya9m5pvElOoTl4PSjoDQoWLXoTO0jhd4BPaNb1oNIevtk6DcndGrRI0QwDyho0uXtVLviEFpu-b01nfMq04FH-r75P0DeTVrv2AO0l1zsdw3bXPcJvilcW2sGc3-9nxc8v0x-X16P5zdfZ5WQ-UiWr0kibkjac05wHBFhbCo1FU4Il2DJjc0FoqKzCnFZVCVBRbYFjyxshMCOCnRWzg68OsJZ9dB3EnQzg5B0Q4lJCzO1ojeSixgZrxQQ0pRa8UdhoIxgHzC3VkL0-H7z6TdMZrXLqCO2R6XHFu5VchltJSEXFuKbZ4cO9Qwy_NmZIsnODMm0L3oTNIBnhnHFRjatMff8fdR020edeZVZZl3UtCH1kLSEncN6GfLHam8rJmBKBMS15Zl08w8pLm86p4I11GX9OoGIYhmjsQ0iC5X405fFoZsG7p615oP8bRPYXVmviVg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149499612</pqid></control><display><type>article</type><title>Exploring the Epigenetic Landscape of Spermatozoa: Impact of Oxidative Stress and Antioxidant Supplementation on DNA Methylation and Hydroxymethylation</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Hug, Elisa ; Renaud, Yoan ; Guiton, Rachel ; Ben Sassi, Mehdi ; Marcaillou, Charles ; Moazamian, Aron ; Gharagozloo, Parviz ; Drevet, Joël R ; Saez, Fabrice</creator><creatorcontrib>Hug, Elisa ; Renaud, Yoan ; Guiton, Rachel ; Ben Sassi, Mehdi ; Marcaillou, Charles ; Moazamian, Aron ; Gharagozloo, Parviz ; Drevet, Joël R ; Saez, Fabrice</creatorcontrib><description>Reproductive success is dependent on gamete integrity, and oxidative stress alters male nuclei, meaning that no DNA repair is possible due to chromatin compaction. The composition of sperm makes it highly sensitive to reactive oxygen species (ROS) but, at the same time, ROS are needed for sperm physiology. Over the past 30 years, much attention has been paid to the consequences of oxidative stress on sperm properties and the protective effects of antioxidant formulations to help fertility. Spermatozoa also carry epigenetic marks, critical for embryo development and the health of offspring. As DNA oxidative damage may disturb the sperm epigenome, we used an established mouse model of post-testicular sperm DNA oxidation to investigate sperm DNA methylation and hydroxymethylation. We also analyzed the potential corrective effect of oral antioxidant supplementation, proven to reduce sperm DNA oxidative damage, on sperm DNA methyl/hydroxymethyl marks. We show that sperm DNA oxidation is associated with a significant increase in overall hydroxymethylation. Oral antioxidant supplementation led to unexpected mild epigenetic changes. Antioxidant supplementation should not be proposed without proper clinical evaluation as it may alter sperm epigenetic marks, leading to a risk of paternally inherited epigenetic alterations.</description><identifier>ISSN: 2076-3921</identifier><identifier>EISSN: 2076-3921</identifier><identifier>DOI: 10.3390/antiox13121520</identifier><identifier>PMID: 39765848</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animals ; Antibodies ; antioxidant ; Antioxidants ; Chromatin ; Dietary supplements ; DNA ; DNA damage ; DNA hydroxymethylation ; DNA methylation ; DNA repair ; Embryonic development ; epigenetic ; Epigenetic inheritance ; Epigenetics ; Ethylenediaminetetraacetic acid ; Fertility ; Genetic testing ; Genomes ; male fertility ; Metabolism ; Methylation ; Oxidative stress ; Physiological aspects ; Reactive oxygen species ; Sperm ; Spermatogenesis ; Spermatozoa</subject><ispartof>Antioxidants, 2024-12, Vol.13 (12), p.1520</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c437t-de42b552976a6aff46d06b4af10f3ef5296da7fc052774aa72dfa50f5b6603163</cites><orcidid>0000-0003-3077-6558 ; 0000-0002-4036-8315 ; 0000-0001-9570-3777 ; 0000-0002-1291-4390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726892/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726892/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39765848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hug, Elisa</creatorcontrib><creatorcontrib>Renaud, Yoan</creatorcontrib><creatorcontrib>Guiton, Rachel</creatorcontrib><creatorcontrib>Ben Sassi, Mehdi</creatorcontrib><creatorcontrib>Marcaillou, Charles</creatorcontrib><creatorcontrib>Moazamian, Aron</creatorcontrib><creatorcontrib>Gharagozloo, Parviz</creatorcontrib><creatorcontrib>Drevet, Joël R</creatorcontrib><creatorcontrib>Saez, Fabrice</creatorcontrib><title>Exploring the Epigenetic Landscape of Spermatozoa: Impact of Oxidative Stress and Antioxidant Supplementation on DNA Methylation and Hydroxymethylation</title><title>Antioxidants</title><addtitle>Antioxidants (Basel)</addtitle><description>Reproductive success is dependent on gamete integrity, and oxidative stress alters male nuclei, meaning that no DNA repair is possible due to chromatin compaction. The composition of sperm makes it highly sensitive to reactive oxygen species (ROS) but, at the same time, ROS are needed for sperm physiology. Over the past 30 years, much attention has been paid to the consequences of oxidative stress on sperm properties and the protective effects of antioxidant formulations to help fertility. Spermatozoa also carry epigenetic marks, critical for embryo development and the health of offspring. As DNA oxidative damage may disturb the sperm epigenome, we used an established mouse model of post-testicular sperm DNA oxidation to investigate sperm DNA methylation and hydroxymethylation. We also analyzed the potential corrective effect of oral antioxidant supplementation, proven to reduce sperm DNA oxidative damage, on sperm DNA methyl/hydroxymethyl marks. We show that sperm DNA oxidation is associated with a significant increase in overall hydroxymethylation. Oral antioxidant supplementation led to unexpected mild epigenetic changes. Antioxidant supplementation should not be proposed without proper clinical evaluation as it may alter sperm epigenetic marks, leading to a risk of paternally inherited epigenetic alterations.</description><subject>Animals</subject><subject>Antibodies</subject><subject>antioxidant</subject><subject>Antioxidants</subject><subject>Chromatin</subject><subject>Dietary supplements</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA hydroxymethylation</subject><subject>DNA methylation</subject><subject>DNA repair</subject><subject>Embryonic development</subject><subject>epigenetic</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Ethylenediaminetetraacetic acid</subject><subject>Fertility</subject><subject>Genetic testing</subject><subject>Genomes</subject><subject>male fertility</subject><subject>Metabolism</subject><subject>Methylation</subject><subject>Oxidative stress</subject><subject>Physiological aspects</subject><subject>Reactive oxygen species</subject><subject>Sperm</subject><subject>Spermatogenesis</subject><subject>Spermatozoa</subject><issn>2076-3921</issn><issn>2076-3921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1vEzEUXCEQrUqvHJElLlxS_LH2ZrmgqA00UqCHwNl664_E0a69eJ0q4Y_wd3Ga0jao65VszZsZe55eUbwl-IKxGn8En1zYEkYo4RS_KE4prsSI1ZS8fHI-Kc6HYY3zVxM2xvXr4oTVleDjcnxa_Jlu-zZE55corQya9m5pvElOoTl4PSjoDQoWLXoTO0jhd4BPaNb1oNIevtk6DcndGrRI0QwDyho0uXtVLviEFpu-b01nfMq04FH-r75P0DeTVrv2AO0l1zsdw3bXPcJvilcW2sGc3-9nxc8v0x-X16P5zdfZ5WQ-UiWr0kibkjac05wHBFhbCo1FU4Il2DJjc0FoqKzCnFZVCVBRbYFjyxshMCOCnRWzg68OsJZ9dB3EnQzg5B0Q4lJCzO1ojeSixgZrxQQ0pRa8UdhoIxgHzC3VkL0-H7z6TdMZrXLqCO2R6XHFu5VchltJSEXFuKbZ4cO9Qwy_NmZIsnODMm0L3oTNIBnhnHFRjatMff8fdR020edeZVZZl3UtCH1kLSEncN6GfLHam8rJmBKBMS15Zl08w8pLm86p4I11GX9OoGIYhmjsQ0iC5X405fFoZsG7p615oP8bRPYXVmviVg</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>Hug, Elisa</creator><creator>Renaud, Yoan</creator><creator>Guiton, Rachel</creator><creator>Ben Sassi, Mehdi</creator><creator>Marcaillou, Charles</creator><creator>Moazamian, Aron</creator><creator>Gharagozloo, Parviz</creator><creator>Drevet, Joël R</creator><creator>Saez, Fabrice</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7T5</scope><scope>7TO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3077-6558</orcidid><orcidid>https://orcid.org/0000-0002-4036-8315</orcidid><orcidid>https://orcid.org/0000-0001-9570-3777</orcidid><orcidid>https://orcid.org/0000-0002-1291-4390</orcidid></search><sort><creationdate>20241212</creationdate><title>Exploring the Epigenetic Landscape of Spermatozoa: Impact of Oxidative Stress and Antioxidant Supplementation on DNA Methylation and Hydroxymethylation</title><author>Hug, Elisa ; Renaud, Yoan ; Guiton, Rachel ; Ben Sassi, Mehdi ; Marcaillou, Charles ; Moazamian, Aron ; Gharagozloo, Parviz ; Drevet, Joël R ; Saez, Fabrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-de42b552976a6aff46d06b4af10f3ef5296da7fc052774aa72dfa50f5b6603163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>antioxidant</topic><topic>Antioxidants</topic><topic>Chromatin</topic><topic>Dietary supplements</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA hydroxymethylation</topic><topic>DNA methylation</topic><topic>DNA repair</topic><topic>Embryonic development</topic><topic>epigenetic</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Ethylenediaminetetraacetic acid</topic><topic>Fertility</topic><topic>Genetic testing</topic><topic>Genomes</topic><topic>male fertility</topic><topic>Metabolism</topic><topic>Methylation</topic><topic>Oxidative stress</topic><topic>Physiological aspects</topic><topic>Reactive oxygen species</topic><topic>Sperm</topic><topic>Spermatogenesis</topic><topic>Spermatozoa</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hug, Elisa</creatorcontrib><creatorcontrib>Renaud, Yoan</creatorcontrib><creatorcontrib>Guiton, Rachel</creatorcontrib><creatorcontrib>Ben Sassi, Mehdi</creatorcontrib><creatorcontrib>Marcaillou, Charles</creatorcontrib><creatorcontrib>Moazamian, Aron</creatorcontrib><creatorcontrib>Gharagozloo, Parviz</creatorcontrib><creatorcontrib>Drevet, Joël R</creatorcontrib><creatorcontrib>Saez, Fabrice</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Antioxidants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hug, Elisa</au><au>Renaud, Yoan</au><au>Guiton, Rachel</au><au>Ben Sassi, Mehdi</au><au>Marcaillou, Charles</au><au>Moazamian, Aron</au><au>Gharagozloo, Parviz</au><au>Drevet, Joël R</au><au>Saez, Fabrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Epigenetic Landscape of Spermatozoa: Impact of Oxidative Stress and Antioxidant Supplementation on DNA Methylation and Hydroxymethylation</atitle><jtitle>Antioxidants</jtitle><addtitle>Antioxidants (Basel)</addtitle><date>2024-12-12</date><risdate>2024</risdate><volume>13</volume><issue>12</issue><spage>1520</spage><pages>1520-</pages><issn>2076-3921</issn><eissn>2076-3921</eissn><abstract>Reproductive success is dependent on gamete integrity, and oxidative stress alters male nuclei, meaning that no DNA repair is possible due to chromatin compaction. The composition of sperm makes it highly sensitive to reactive oxygen species (ROS) but, at the same time, ROS are needed for sperm physiology. Over the past 30 years, much attention has been paid to the consequences of oxidative stress on sperm properties and the protective effects of antioxidant formulations to help fertility. Spermatozoa also carry epigenetic marks, critical for embryo development and the health of offspring. As DNA oxidative damage may disturb the sperm epigenome, we used an established mouse model of post-testicular sperm DNA oxidation to investigate sperm DNA methylation and hydroxymethylation. We also analyzed the potential corrective effect of oral antioxidant supplementation, proven to reduce sperm DNA oxidative damage, on sperm DNA methyl/hydroxymethyl marks. We show that sperm DNA oxidation is associated with a significant increase in overall hydroxymethylation. Oral antioxidant supplementation led to unexpected mild epigenetic changes. Antioxidant supplementation should not be proposed without proper clinical evaluation as it may alter sperm epigenetic marks, leading to a risk of paternally inherited epigenetic alterations.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39765848</pmid><doi>10.3390/antiox13121520</doi><orcidid>https://orcid.org/0000-0003-3077-6558</orcidid><orcidid>https://orcid.org/0000-0002-4036-8315</orcidid><orcidid>https://orcid.org/0000-0001-9570-3777</orcidid><orcidid>https://orcid.org/0000-0002-1291-4390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3921
ispartof Antioxidants, 2024-12, Vol.13 (12), p.1520
issn 2076-3921
2076-3921
language eng
recordid cdi_proquest_journals_3149499612
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Animals
Antibodies
antioxidant
Antioxidants
Chromatin
Dietary supplements
DNA
DNA damage
DNA hydroxymethylation
DNA methylation
DNA repair
Embryonic development
epigenetic
Epigenetic inheritance
Epigenetics
Ethylenediaminetetraacetic acid
Fertility
Genetic testing
Genomes
male fertility
Metabolism
Methylation
Oxidative stress
Physiological aspects
Reactive oxygen species
Sperm
Spermatogenesis
Spermatozoa
title Exploring the Epigenetic Landscape of Spermatozoa: Impact of Oxidative Stress and Antioxidant Supplementation on DNA Methylation and Hydroxymethylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Epigenetic%20Landscape%20of%20Spermatozoa:%20Impact%20of%20Oxidative%20Stress%20and%20Antioxidant%20Supplementation%20on%20DNA%20Methylation%20and%20Hydroxymethylation&rft.jtitle=Antioxidants&rft.au=Hug,%20Elisa&rft.date=2024-12-12&rft.volume=13&rft.issue=12&rft.spage=1520&rft.pages=1520-&rft.issn=2076-3921&rft.eissn=2076-3921&rft_id=info:doi/10.3390/antiox13121520&rft_dat=%3Cgale_doaj_%3EA821600245%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149499612&rft_id=info:pmid/39765848&rft_galeid=A821600245&rft_doaj_id=oai_doaj_org_article_5690e0dc36ab4d65bc0ede635a05f2da&rfr_iscdi=true