Advancing Industrial Object Detection Through Domain Adaptation: A Solution for Industry 5.0

Domain adaptation (DA) is essential for developing robust machine learning models capable of operating across different domains with minimal retraining. This study explores the application of domain adaptation techniques to 3D datasets for industrial object detection, with a focus on short-range and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Actuators 2024-12, Vol.13 (12), p.513
Hauptverfasser: Fatima, Zainab, Zardari, Shehnila, Tanveer, Muhammad Hassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 513
container_title Actuators
container_volume 13
creator Fatima, Zainab
Zardari, Shehnila
Tanveer, Muhammad Hassan
description Domain adaptation (DA) is essential for developing robust machine learning models capable of operating across different domains with minimal retraining. This study explores the application of domain adaptation techniques to 3D datasets for industrial object detection, with a focus on short-range and long-range scenarios. While 3D data provide superior spatial information for detecting industrial parts, challenges arise due to domain shifts between training data (often clean or synthetic) and real-world conditions (noisy and occluded environments). Using the MVTec ITODD dataset, we propose a multi-level adaptation approach that leverages local and global feature alignment through PointNet-based architectures. We address sensor variability by aligning data from high-precision, long-range sensors with noisier short-range alternatives. Our results demonstrate an 85% accuracy with a minimal 0.02% performance drop, highlighting the resilience of the proposed methods. This work contributes to the emerging needs of Industry 5.0 by ensuring adaptable and scalable automation in manufacturing processes, empowering robotic systems to perform precise, reliable object detection and manipulation under challenging, real-world conditions, and supporting seamless human–robot collaboration.
doi_str_mv 10.3390/act13120513
format Article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3149483485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A821599347</galeid><doaj_id>oai_doaj_org_article_073a3b15398848c2828b831467f88e91</doaj_id><sourcerecordid>A821599347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-6e5e5bb7fdacf5ae471936f9cd5547849cc9d34facab459b040b3bad8499d0183</originalsourceid><addsrcrecordid>eNpNUU1rGzEQFaWFBjen_gFBj8WOtCN5pd6WpEkNgRya3AJi9OXI2CtXqy3k31eJ25K5zPDem8djhpDPnK0ANLtAVznwjkkO78hZx_r1kqlOvn8zfyTn07RjrTQHxeCMPA7-N44ujVu6Gf081ZJwT-_sLrhKr0JtLeWR3j-VPG-f6FU-YBrp4PFY8YX5Rgf6M-_nV1XM5Z_LM5Ur9ol8iLifwvnfviAP19_vL38sb-9uNpfD7dJ1mtflOsggre2jRxclBtFzDeuonZdS9Epo57QHEdGhFVJbJpgFi74x2jOuYEE2J1-fcWeOJR2wPJuMybwCuWwNlprcPhjWA4LlErRSQrlOdcoq4GLdR6VCu8qCfDl5HUv-NYepml2ey9jimybTQoFQsqlWJ9UWm2kaY66lxXPowyG5PIaYGj6ojkutQfRt4etpwZU8TSXE_zE5My_vM2_eB38ATK-K1Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149483485</pqid></control><display><type>article</type><title>Advancing Industrial Object Detection Through Domain Adaptation: A Solution for Industry 5.0</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Fatima, Zainab ; Zardari, Shehnila ; Tanveer, Muhammad Hassan</creator><creatorcontrib>Fatima, Zainab ; Zardari, Shehnila ; Tanveer, Muhammad Hassan</creatorcontrib><description>Domain adaptation (DA) is essential for developing robust machine learning models capable of operating across different domains with minimal retraining. This study explores the application of domain adaptation techniques to 3D datasets for industrial object detection, with a focus on short-range and long-range scenarios. While 3D data provide superior spatial information for detecting industrial parts, challenges arise due to domain shifts between training data (often clean or synthetic) and real-world conditions (noisy and occluded environments). Using the MVTec ITODD dataset, we propose a multi-level adaptation approach that leverages local and global feature alignment through PointNet-based architectures. We address sensor variability by aligning data from high-precision, long-range sensors with noisier short-range alternatives. Our results demonstrate an 85% accuracy with a minimal 0.02% performance drop, highlighting the resilience of the proposed methods. This work contributes to the emerging needs of Industry 5.0 by ensuring adaptable and scalable automation in manufacturing processes, empowering robotic systems to perform precise, reliable object detection and manipulation under challenging, real-world conditions, and supporting seamless human–robot collaboration.</description><identifier>ISSN: 2076-0825</identifier><identifier>EISSN: 2076-0825</identifier><identifier>DOI: 10.3390/act13120513</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>3D object detection ; Adaptation ; Automation ; Datasets ; domain adaptation ; industrial datasets ; Industrial development ; Industrial robots ; Industry 5.0 ; Machine learning ; MVTec ITODD ; PointNet ; Sensors ; Spatial data ; Telematics</subject><ispartof>Actuators, 2024-12, Vol.13 (12), p.513</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-6e5e5bb7fdacf5ae471936f9cd5547849cc9d34facab459b040b3bad8499d0183</cites><orcidid>0000-0002-0525-3336 ; 0000-0001-9266-6368 ; 0000-0001-7964-1449</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2095,27903,27904</link.rule.ids></links><search><creatorcontrib>Fatima, Zainab</creatorcontrib><creatorcontrib>Zardari, Shehnila</creatorcontrib><creatorcontrib>Tanveer, Muhammad Hassan</creatorcontrib><title>Advancing Industrial Object Detection Through Domain Adaptation: A Solution for Industry 5.0</title><title>Actuators</title><description>Domain adaptation (DA) is essential for developing robust machine learning models capable of operating across different domains with minimal retraining. This study explores the application of domain adaptation techniques to 3D datasets for industrial object detection, with a focus on short-range and long-range scenarios. While 3D data provide superior spatial information for detecting industrial parts, challenges arise due to domain shifts between training data (often clean or synthetic) and real-world conditions (noisy and occluded environments). Using the MVTec ITODD dataset, we propose a multi-level adaptation approach that leverages local and global feature alignment through PointNet-based architectures. We address sensor variability by aligning data from high-precision, long-range sensors with noisier short-range alternatives. Our results demonstrate an 85% accuracy with a minimal 0.02% performance drop, highlighting the resilience of the proposed methods. This work contributes to the emerging needs of Industry 5.0 by ensuring adaptable and scalable automation in manufacturing processes, empowering robotic systems to perform precise, reliable object detection and manipulation under challenging, real-world conditions, and supporting seamless human–robot collaboration.</description><subject>3D object detection</subject><subject>Adaptation</subject><subject>Automation</subject><subject>Datasets</subject><subject>domain adaptation</subject><subject>industrial datasets</subject><subject>Industrial development</subject><subject>Industrial robots</subject><subject>Industry 5.0</subject><subject>Machine learning</subject><subject>MVTec ITODD</subject><subject>PointNet</subject><subject>Sensors</subject><subject>Spatial data</subject><subject>Telematics</subject><issn>2076-0825</issn><issn>2076-0825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rGzEQFaWFBjen_gFBj8WOtCN5pd6WpEkNgRya3AJi9OXI2CtXqy3k31eJ25K5zPDem8djhpDPnK0ANLtAVznwjkkO78hZx_r1kqlOvn8zfyTn07RjrTQHxeCMPA7-N44ujVu6Gf081ZJwT-_sLrhKr0JtLeWR3j-VPG-f6FU-YBrp4PFY8YX5Rgf6M-_nV1XM5Z_LM5Ur9ol8iLifwvnfviAP19_vL38sb-9uNpfD7dJ1mtflOsggre2jRxclBtFzDeuonZdS9Epo57QHEdGhFVJbJpgFi74x2jOuYEE2J1-fcWeOJR2wPJuMybwCuWwNlprcPhjWA4LlErRSQrlOdcoq4GLdR6VCu8qCfDl5HUv-NYepml2ey9jimybTQoFQsqlWJ9UWm2kaY66lxXPowyG5PIaYGj6ojkutQfRt4etpwZU8TSXE_zE5My_vM2_eB38ATK-K1Q</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Fatima, Zainab</creator><creator>Zardari, Shehnila</creator><creator>Tanveer, Muhammad Hassan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0525-3336</orcidid><orcidid>https://orcid.org/0000-0001-9266-6368</orcidid><orcidid>https://orcid.org/0000-0001-7964-1449</orcidid></search><sort><creationdate>20241201</creationdate><title>Advancing Industrial Object Detection Through Domain Adaptation: A Solution for Industry 5.0</title><author>Fatima, Zainab ; Zardari, Shehnila ; Tanveer, Muhammad Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-6e5e5bb7fdacf5ae471936f9cd5547849cc9d34facab459b040b3bad8499d0183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D object detection</topic><topic>Adaptation</topic><topic>Automation</topic><topic>Datasets</topic><topic>domain adaptation</topic><topic>industrial datasets</topic><topic>Industrial development</topic><topic>Industrial robots</topic><topic>Industry 5.0</topic><topic>Machine learning</topic><topic>MVTec ITODD</topic><topic>PointNet</topic><topic>Sensors</topic><topic>Spatial data</topic><topic>Telematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatima, Zainab</creatorcontrib><creatorcontrib>Zardari, Shehnila</creatorcontrib><creatorcontrib>Tanveer, Muhammad Hassan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Actuators</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatima, Zainab</au><au>Zardari, Shehnila</au><au>Tanveer, Muhammad Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advancing Industrial Object Detection Through Domain Adaptation: A Solution for Industry 5.0</atitle><jtitle>Actuators</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>13</volume><issue>12</issue><spage>513</spage><pages>513-</pages><issn>2076-0825</issn><eissn>2076-0825</eissn><abstract>Domain adaptation (DA) is essential for developing robust machine learning models capable of operating across different domains with minimal retraining. This study explores the application of domain adaptation techniques to 3D datasets for industrial object detection, with a focus on short-range and long-range scenarios. While 3D data provide superior spatial information for detecting industrial parts, challenges arise due to domain shifts between training data (often clean or synthetic) and real-world conditions (noisy and occluded environments). Using the MVTec ITODD dataset, we propose a multi-level adaptation approach that leverages local and global feature alignment through PointNet-based architectures. We address sensor variability by aligning data from high-precision, long-range sensors with noisier short-range alternatives. Our results demonstrate an 85% accuracy with a minimal 0.02% performance drop, highlighting the resilience of the proposed methods. This work contributes to the emerging needs of Industry 5.0 by ensuring adaptable and scalable automation in manufacturing processes, empowering robotic systems to perform precise, reliable object detection and manipulation under challenging, real-world conditions, and supporting seamless human–robot collaboration.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/act13120513</doi><orcidid>https://orcid.org/0000-0002-0525-3336</orcidid><orcidid>https://orcid.org/0000-0001-9266-6368</orcidid><orcidid>https://orcid.org/0000-0001-7964-1449</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-0825
ispartof Actuators, 2024-12, Vol.13 (12), p.513
issn 2076-0825
2076-0825
language eng
recordid cdi_proquest_journals_3149483485
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects 3D object detection
Adaptation
Automation
Datasets
domain adaptation
industrial datasets
Industrial development
Industrial robots
Industry 5.0
Machine learning
MVTec ITODD
PointNet
Sensors
Spatial data
Telematics
title Advancing Industrial Object Detection Through Domain Adaptation: A Solution for Industry 5.0
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advancing%20Industrial%20Object%20Detection%20Through%20Domain%20Adaptation:%20A%20Solution%20for%20Industry%205.0&rft.jtitle=Actuators&rft.au=Fatima,%20Zainab&rft.date=2024-12-01&rft.volume=13&rft.issue=12&rft.spage=513&rft.pages=513-&rft.issn=2076-0825&rft.eissn=2076-0825&rft_id=info:doi/10.3390/act13120513&rft_dat=%3Cgale_doaj_%3EA821599347%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149483485&rft_id=info:pmid/&rft_galeid=A821599347&rft_doaj_id=oai_doaj_org_article_073a3b15398848c2828b831467f88e91&rfr_iscdi=true