Enhanced tunneling electroresistance in ferroelectric tunnel junctions achieved through dual interface control

Interface engineering in ferroelectric tunnel junctions is a fertile playground to realize large tunneling electroresistance (TER) ratios. Here, the TER effect of Pt/La0.8Ca0.2MnO3 (LCMO)/BaTiO3 (BTO)/Nb: SrTiO3 (NSTO) ferroelectric tunnel junctions (FTJs) is investigated. It is found that the TER i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2024-12, Vol.125 (26)
Hauptverfasser: Ma, Zhijun, Zhang, Qi, Zhang, Zeyu, Guo, Yizhong, Ruan, Yongqi, Wang, Zhiwei, Zhou, Peng, Lord, Mikayla, Luo, Ji, Liu, Shuai, Valanoor, Nagarajan, Zhang, Tianjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 26
container_start_page
container_title Applied physics letters
container_volume 125
creator Ma, Zhijun
Zhang, Qi
Zhang, Zeyu
Guo, Yizhong
Ruan, Yongqi
Wang, Zhiwei
Zhou, Peng
Lord, Mikayla
Luo, Ji
Liu, Shuai
Valanoor, Nagarajan
Zhang, Tianjin
description Interface engineering in ferroelectric tunnel junctions is a fertile playground to realize large tunneling electroresistance (TER) ratios. Here, the TER effect of Pt/La0.8Ca0.2MnO3 (LCMO)/BaTiO3 (BTO)/Nb: SrTiO3 (NSTO) ferroelectric tunnel junctions (FTJs) is investigated. It is found that the TER is enhanced by 2 orders of magnitude for the FTJ with a 0.5 nm (∼one unit cell) LCMO layer, as compared to its counterpart without LCMO. The observed effect is attributed to the NSTO/BTO and LCMO/BTO interfaces, both of which are responsive to ferroelectric polarization. These interfaces exhibit metallic or insulating behavior synchronously depending on the direction of the polarization in the BTO layer, resulting from the ferroelectric electric field effect and metal–insulator phase transition, respectively. This switching action with polarization reversal significantly increases the contrast in electrical resistance between the high resistance state (OFF state) and the low resistance state (ON state), therefore triggering a large TER. The increase in LCMO thickness (from 0.5 to 1 and 2 nm) leads to the decrease in TER, owing to the decreased barrier height/width at the NSTO/BTO interface, as revealed by the electron transport mechanism of Fowler–Nordheim (FN) tunneling.
doi_str_mv 10.1063/5.0220789
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3149291582</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149291582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c182t-788479e6b75b2ce74d2b1a731ed3a49ebc98868c33165829949e24aca0a3edf23</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK4e_AcFTwpd89E2yVGW9QMWvOi5pOl0m6Uma5IK_ntT2rOnYeZ95h3mReiW4A3BFXssN5hSzIU8QyuCOc8ZIeIcrTDGLK9kSS7RVQjH1JaUsRWyO9srq6HN4mgtDMYeMhhAR-88BBPiJGbGZh1472bF6AXOjqPV0TgbMqV7Az-TTe_deOizdlRD2ovgO5UctLPJcrhGF50aAtwsdY0-n3cf29d8__7ytn3a55oIGnMuRMElVA0vG6qBFy1tiOKMQMtUIaHRUohKaMZIVQoqZZrRQmmFFYO2o2yN7mbfk3ffI4RYH93obTpZM1JIKklaS9T9TGnvQvDQ1SdvvpT_rQmupzjrsl7iTOzDzAZtopqe_gf-A4jYdsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149291582</pqid></control><display><type>article</type><title>Enhanced tunneling electroresistance in ferroelectric tunnel junctions achieved through dual interface control</title><source>AIP Journals Complete</source><creator>Ma, Zhijun ; Zhang, Qi ; Zhang, Zeyu ; Guo, Yizhong ; Ruan, Yongqi ; Wang, Zhiwei ; Zhou, Peng ; Lord, Mikayla ; Luo, Ji ; Liu, Shuai ; Valanoor, Nagarajan ; Zhang, Tianjin</creator><creatorcontrib>Ma, Zhijun ; Zhang, Qi ; Zhang, Zeyu ; Guo, Yizhong ; Ruan, Yongqi ; Wang, Zhiwei ; Zhou, Peng ; Lord, Mikayla ; Luo, Ji ; Liu, Shuai ; Valanoor, Nagarajan ; Zhang, Tianjin</creatorcontrib><description>Interface engineering in ferroelectric tunnel junctions is a fertile playground to realize large tunneling electroresistance (TER) ratios. Here, the TER effect of Pt/La0.8Ca0.2MnO3 (LCMO)/BaTiO3 (BTO)/Nb: SrTiO3 (NSTO) ferroelectric tunnel junctions (FTJs) is investigated. It is found that the TER is enhanced by 2 orders of magnitude for the FTJ with a 0.5 nm (∼one unit cell) LCMO layer, as compared to its counterpart without LCMO. The observed effect is attributed to the NSTO/BTO and LCMO/BTO interfaces, both of which are responsive to ferroelectric polarization. These interfaces exhibit metallic or insulating behavior synchronously depending on the direction of the polarization in the BTO layer, resulting from the ferroelectric electric field effect and metal–insulator phase transition, respectively. This switching action with polarization reversal significantly increases the contrast in electrical resistance between the high resistance state (OFF state) and the low resistance state (ON state), therefore triggering a large TER. The increase in LCMO thickness (from 0.5 to 1 and 2 nm) leads to the decrease in TER, owing to the decreased barrier height/width at the NSTO/BTO interface, as revealed by the electron transport mechanism of Fowler–Nordheim (FN) tunneling.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0220789</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Barium titanates ; Electric fields ; Electrical junctions ; Electron transport ; Ferroelectric materials ; Ferroelectricity ; High resistance ; Interfaces ; Low resistance ; Phase transitions ; Playgrounds ; Polarization ; Tunnel junctions ; Unit cell</subject><ispartof>Applied physics letters, 2024-12, Vol.125 (26)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c182t-788479e6b75b2ce74d2b1a731ed3a49ebc98868c33165829949e24aca0a3edf23</cites><orcidid>0000-0002-1388-3872 ; 0000-0002-0083-6567 ; 0000-0002-1353-8614 ; 0000-0003-2534-5868 ; 0000-0002-5325-7294 ; 0000-0002-4821-9154 ; 0000-0003-1940-8471</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0220789$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Ma, Zhijun</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Zhang, Zeyu</creatorcontrib><creatorcontrib>Guo, Yizhong</creatorcontrib><creatorcontrib>Ruan, Yongqi</creatorcontrib><creatorcontrib>Wang, Zhiwei</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Lord, Mikayla</creatorcontrib><creatorcontrib>Luo, Ji</creatorcontrib><creatorcontrib>Liu, Shuai</creatorcontrib><creatorcontrib>Valanoor, Nagarajan</creatorcontrib><creatorcontrib>Zhang, Tianjin</creatorcontrib><title>Enhanced tunneling electroresistance in ferroelectric tunnel junctions achieved through dual interface control</title><title>Applied physics letters</title><description>Interface engineering in ferroelectric tunnel junctions is a fertile playground to realize large tunneling electroresistance (TER) ratios. Here, the TER effect of Pt/La0.8Ca0.2MnO3 (LCMO)/BaTiO3 (BTO)/Nb: SrTiO3 (NSTO) ferroelectric tunnel junctions (FTJs) is investigated. It is found that the TER is enhanced by 2 orders of magnitude for the FTJ with a 0.5 nm (∼one unit cell) LCMO layer, as compared to its counterpart without LCMO. The observed effect is attributed to the NSTO/BTO and LCMO/BTO interfaces, both of which are responsive to ferroelectric polarization. These interfaces exhibit metallic or insulating behavior synchronously depending on the direction of the polarization in the BTO layer, resulting from the ferroelectric electric field effect and metal–insulator phase transition, respectively. This switching action with polarization reversal significantly increases the contrast in electrical resistance between the high resistance state (OFF state) and the low resistance state (ON state), therefore triggering a large TER. The increase in LCMO thickness (from 0.5 to 1 and 2 nm) leads to the decrease in TER, owing to the decreased barrier height/width at the NSTO/BTO interface, as revealed by the electron transport mechanism of Fowler–Nordheim (FN) tunneling.</description><subject>Barium titanates</subject><subject>Electric fields</subject><subject>Electrical junctions</subject><subject>Electron transport</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>High resistance</subject><subject>Interfaces</subject><subject>Low resistance</subject><subject>Phase transitions</subject><subject>Playgrounds</subject><subject>Polarization</subject><subject>Tunnel junctions</subject><subject>Unit cell</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK4e_AcFTwpd89E2yVGW9QMWvOi5pOl0m6Uma5IK_ntT2rOnYeZ95h3mReiW4A3BFXssN5hSzIU8QyuCOc8ZIeIcrTDGLK9kSS7RVQjH1JaUsRWyO9srq6HN4mgtDMYeMhhAR-88BBPiJGbGZh1472bF6AXOjqPV0TgbMqV7Az-TTe_deOizdlRD2ovgO5UctLPJcrhGF50aAtwsdY0-n3cf29d8__7ytn3a55oIGnMuRMElVA0vG6qBFy1tiOKMQMtUIaHRUohKaMZIVQoqZZrRQmmFFYO2o2yN7mbfk3ffI4RYH93obTpZM1JIKklaS9T9TGnvQvDQ1SdvvpT_rQmupzjrsl7iTOzDzAZtopqe_gf-A4jYdsY</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Ma, Zhijun</creator><creator>Zhang, Qi</creator><creator>Zhang, Zeyu</creator><creator>Guo, Yizhong</creator><creator>Ruan, Yongqi</creator><creator>Wang, Zhiwei</creator><creator>Zhou, Peng</creator><creator>Lord, Mikayla</creator><creator>Luo, Ji</creator><creator>Liu, Shuai</creator><creator>Valanoor, Nagarajan</creator><creator>Zhang, Tianjin</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1388-3872</orcidid><orcidid>https://orcid.org/0000-0002-0083-6567</orcidid><orcidid>https://orcid.org/0000-0002-1353-8614</orcidid><orcidid>https://orcid.org/0000-0003-2534-5868</orcidid><orcidid>https://orcid.org/0000-0002-5325-7294</orcidid><orcidid>https://orcid.org/0000-0002-4821-9154</orcidid><orcidid>https://orcid.org/0000-0003-1940-8471</orcidid></search><sort><creationdate>20241223</creationdate><title>Enhanced tunneling electroresistance in ferroelectric tunnel junctions achieved through dual interface control</title><author>Ma, Zhijun ; Zhang, Qi ; Zhang, Zeyu ; Guo, Yizhong ; Ruan, Yongqi ; Wang, Zhiwei ; Zhou, Peng ; Lord, Mikayla ; Luo, Ji ; Liu, Shuai ; Valanoor, Nagarajan ; Zhang, Tianjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c182t-788479e6b75b2ce74d2b1a731ed3a49ebc98868c33165829949e24aca0a3edf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Barium titanates</topic><topic>Electric fields</topic><topic>Electrical junctions</topic><topic>Electron transport</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>High resistance</topic><topic>Interfaces</topic><topic>Low resistance</topic><topic>Phase transitions</topic><topic>Playgrounds</topic><topic>Polarization</topic><topic>Tunnel junctions</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Zhijun</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Zhang, Zeyu</creatorcontrib><creatorcontrib>Guo, Yizhong</creatorcontrib><creatorcontrib>Ruan, Yongqi</creatorcontrib><creatorcontrib>Wang, Zhiwei</creatorcontrib><creatorcontrib>Zhou, Peng</creatorcontrib><creatorcontrib>Lord, Mikayla</creatorcontrib><creatorcontrib>Luo, Ji</creatorcontrib><creatorcontrib>Liu, Shuai</creatorcontrib><creatorcontrib>Valanoor, Nagarajan</creatorcontrib><creatorcontrib>Zhang, Tianjin</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Zhijun</au><au>Zhang, Qi</au><au>Zhang, Zeyu</au><au>Guo, Yizhong</au><au>Ruan, Yongqi</au><au>Wang, Zhiwei</au><au>Zhou, Peng</au><au>Lord, Mikayla</au><au>Luo, Ji</au><au>Liu, Shuai</au><au>Valanoor, Nagarajan</au><au>Zhang, Tianjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced tunneling electroresistance in ferroelectric tunnel junctions achieved through dual interface control</atitle><jtitle>Applied physics letters</jtitle><date>2024-12-23</date><risdate>2024</risdate><volume>125</volume><issue>26</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Interface engineering in ferroelectric tunnel junctions is a fertile playground to realize large tunneling electroresistance (TER) ratios. Here, the TER effect of Pt/La0.8Ca0.2MnO3 (LCMO)/BaTiO3 (BTO)/Nb: SrTiO3 (NSTO) ferroelectric tunnel junctions (FTJs) is investigated. It is found that the TER is enhanced by 2 orders of magnitude for the FTJ with a 0.5 nm (∼one unit cell) LCMO layer, as compared to its counterpart without LCMO. The observed effect is attributed to the NSTO/BTO and LCMO/BTO interfaces, both of which are responsive to ferroelectric polarization. These interfaces exhibit metallic or insulating behavior synchronously depending on the direction of the polarization in the BTO layer, resulting from the ferroelectric electric field effect and metal–insulator phase transition, respectively. This switching action with polarization reversal significantly increases the contrast in electrical resistance between the high resistance state (OFF state) and the low resistance state (ON state), therefore triggering a large TER. The increase in LCMO thickness (from 0.5 to 1 and 2 nm) leads to the decrease in TER, owing to the decreased barrier height/width at the NSTO/BTO interface, as revealed by the electron transport mechanism of Fowler–Nordheim (FN) tunneling.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0220789</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-1388-3872</orcidid><orcidid>https://orcid.org/0000-0002-0083-6567</orcidid><orcidid>https://orcid.org/0000-0002-1353-8614</orcidid><orcidid>https://orcid.org/0000-0003-2534-5868</orcidid><orcidid>https://orcid.org/0000-0002-5325-7294</orcidid><orcidid>https://orcid.org/0000-0002-4821-9154</orcidid><orcidid>https://orcid.org/0000-0003-1940-8471</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2024-12, Vol.125 (26)
issn 0003-6951
1077-3118
language eng
recordid cdi_proquest_journals_3149291582
source AIP Journals Complete
subjects Barium titanates
Electric fields
Electrical junctions
Electron transport
Ferroelectric materials
Ferroelectricity
High resistance
Interfaces
Low resistance
Phase transitions
Playgrounds
Polarization
Tunnel junctions
Unit cell
title Enhanced tunneling electroresistance in ferroelectric tunnel junctions achieved through dual interface control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20tunneling%20electroresistance%20in%20ferroelectric%20tunnel%20junctions%20achieved%20through%20dual%20interface%20control&rft.jtitle=Applied%20physics%20letters&rft.au=Ma,%20Zhijun&rft.date=2024-12-23&rft.volume=125&rft.issue=26&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0220789&rft_dat=%3Cproquest_cross%3E3149291582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149291582&rft_id=info:pmid/&rfr_iscdi=true