Probabilistic Identities in n-Torsion Groups

In this paper, a 3-generated infinite group is constructed in which the probability of satisfying a certain fixed identity tends to 1. At the same time, this identity is not satisfied throughout the entire group. The question of the existence of such a group was recently posed by several authors. Mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of contemporary mathematical analysis 2024-12, Vol.59 (6), p.455-459
Hauptverfasser: Atabekyan, V. S., Bayramyan, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 459
container_issue 6
container_start_page 455
container_title Journal of contemporary mathematical analysis
container_volume 59
creator Atabekyan, V. S.
Bayramyan, A. A.
description In this paper, a 3-generated infinite group is constructed in which the probability of satisfying a certain fixed identity tends to 1. At the same time, this identity is not satisfied throughout the entire group. The question of the existence of such a group was recently posed by several authors. More precisely, the work considers an -periodic product of a free periodic group of rank 2 and an infinite cyclic group. It is proved that in this product, the probability of satisfying the identity tends to 1, but it does not hold on the entire product.
doi_str_mv 10.3103/S1068362324700304
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3149238258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149238258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-95b33d33b386d4fc836fdc76d9b361e87d8ee6c4df966aa2d5e04366e60242173</originalsourceid><addsrcrecordid>eNp1UE1LAzEUDKJgrf4AbwtejSZ52WxylKJtoaBgPYfdJCspNVmT3YP_3pQKHsTTG5iPNwxC15TcASVw_0qJkCAYMN4QAoSfoBlVwLHiVJwWXGh84M_RRc47QuqC-QzdvqTYtZ3f-zx6U62tC6MfvcuVD1XA25iyj6FapjgN-RKd9e0-u6ufO0dvT4_bxQpvnpfrxcMGG6rkiFXdAViADqSwvDelV29NI6zqQFAnGyudE4bbXgnRtszWjnAQwgnCOKMNzNHNMXdI8XNyedS7OKVQXmqgXDGQrJZFRY8qk2LOyfV6SP6jTV-aEn0YRf8ZpXjY0ZOLNry79Jv8v-kbug5hfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149238258</pqid></control><display><type>article</type><title>Probabilistic Identities in n-Torsion Groups</title><source>Springer Nature - Complete Springer Journals</source><creator>Atabekyan, V. S. ; Bayramyan, A. A.</creator><creatorcontrib>Atabekyan, V. S. ; Bayramyan, A. A.</creatorcontrib><description>In this paper, a 3-generated infinite group is constructed in which the probability of satisfying a certain fixed identity tends to 1. At the same time, this identity is not satisfied throughout the entire group. The question of the existence of such a group was recently posed by several authors. More precisely, the work considers an -periodic product of a free periodic group of rank 2 and an infinite cyclic group. It is proved that in this product, the probability of satisfying the identity tends to 1, but it does not hold on the entire product.</description><identifier>ISSN: 1068-3623</identifier><identifier>EISSN: 1934-9416</identifier><identifier>DOI: 10.3103/S1068362324700304</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Mathematics ; Mathematics and Statistics ; Statistical analysis</subject><ispartof>Journal of contemporary mathematical analysis, 2024-12, Vol.59 (6), p.455-459</ispartof><rights>Allerton Press, Inc. 2024 ISSN 1068-3623, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2024, Vol. 59, No. 6, pp. 455–459. © Allerton Press, Inc., 2024. Russian Text © The Author(s), 2024, published in Izvestiya Natsional’noi Akademii Nauk Armenii, Matematika, 2024, No. 6, pp. 3–9.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-95b33d33b386d4fc836fdc76d9b361e87d8ee6c4df966aa2d5e04366e60242173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1068362324700304$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1068362324700304$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Atabekyan, V. S.</creatorcontrib><creatorcontrib>Bayramyan, A. A.</creatorcontrib><title>Probabilistic Identities in n-Torsion Groups</title><title>Journal of contemporary mathematical analysis</title><addtitle>J. Contemp. Mathemat. Anal</addtitle><description>In this paper, a 3-generated infinite group is constructed in which the probability of satisfying a certain fixed identity tends to 1. At the same time, this identity is not satisfied throughout the entire group. The question of the existence of such a group was recently posed by several authors. More precisely, the work considers an -periodic product of a free periodic group of rank 2 and an infinite cyclic group. It is proved that in this product, the probability of satisfying the identity tends to 1, but it does not hold on the entire product.</description><subject>Algebra</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Statistical analysis</subject><issn>1068-3623</issn><issn>1934-9416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEUDKJgrf4AbwtejSZ52WxylKJtoaBgPYfdJCspNVmT3YP_3pQKHsTTG5iPNwxC15TcASVw_0qJkCAYMN4QAoSfoBlVwLHiVJwWXGh84M_RRc47QuqC-QzdvqTYtZ3f-zx6U62tC6MfvcuVD1XA25iyj6FapjgN-RKd9e0-u6ufO0dvT4_bxQpvnpfrxcMGG6rkiFXdAViADqSwvDelV29NI6zqQFAnGyudE4bbXgnRtszWjnAQwgnCOKMNzNHNMXdI8XNyedS7OKVQXmqgXDGQrJZFRY8qk2LOyfV6SP6jTV-aEn0YRf8ZpXjY0ZOLNry79Jv8v-kbug5hfg</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Atabekyan, V. S.</creator><creator>Bayramyan, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>Probabilistic Identities in n-Torsion Groups</title><author>Atabekyan, V. S. ; Bayramyan, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-95b33d33b386d4fc836fdc76d9b361e87d8ee6c4df966aa2d5e04366e60242173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atabekyan, V. S.</creatorcontrib><creatorcontrib>Bayramyan, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of contemporary mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atabekyan, V. S.</au><au>Bayramyan, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Identities in n-Torsion Groups</atitle><jtitle>Journal of contemporary mathematical analysis</jtitle><stitle>J. Contemp. Mathemat. Anal</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>59</volume><issue>6</issue><spage>455</spage><epage>459</epage><pages>455-459</pages><issn>1068-3623</issn><eissn>1934-9416</eissn><abstract>In this paper, a 3-generated infinite group is constructed in which the probability of satisfying a certain fixed identity tends to 1. At the same time, this identity is not satisfied throughout the entire group. The question of the existence of such a group was recently posed by several authors. More precisely, the work considers an -periodic product of a free periodic group of rank 2 and an infinite cyclic group. It is proved that in this product, the probability of satisfying the identity tends to 1, but it does not hold on the entire product.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1068362324700304</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-3623
ispartof Journal of contemporary mathematical analysis, 2024-12, Vol.59 (6), p.455-459
issn 1068-3623
1934-9416
language eng
recordid cdi_proquest_journals_3149238258
source Springer Nature - Complete Springer Journals
subjects Algebra
Mathematics
Mathematics and Statistics
Statistical analysis
title Probabilistic Identities in n-Torsion Groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Identities%20in%20n-Torsion%20Groups&rft.jtitle=Journal%20of%20contemporary%20mathematical%20analysis&rft.au=Atabekyan,%20V.%20S.&rft.date=2024-12-01&rft.volume=59&rft.issue=6&rft.spage=455&rft.epage=459&rft.pages=455-459&rft.issn=1068-3623&rft.eissn=1934-9416&rft_id=info:doi/10.3103/S1068362324700304&rft_dat=%3Cproquest_cross%3E3149238258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149238258&rft_id=info:pmid/&rfr_iscdi=true