Probabilistic Identities in n-Torsion Groups
In this paper, a 3-generated infinite group is constructed in which the probability of satisfying a certain fixed identity tends to 1. At the same time, this identity is not satisfied throughout the entire group. The question of the existence of such a group was recently posed by several authors. Mo...
Gespeichert in:
Veröffentlicht in: | Journal of contemporary mathematical analysis 2024-12, Vol.59 (6), p.455-459 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 459 |
---|---|
container_issue | 6 |
container_start_page | 455 |
container_title | Journal of contemporary mathematical analysis |
container_volume | 59 |
creator | Atabekyan, V. S. Bayramyan, A. A. |
description | In this paper, a 3-generated infinite group is constructed in which the probability of satisfying a certain fixed identity tends to 1. At the same time, this identity is not satisfied throughout the entire group. The question of the existence of such a group was recently posed by several authors. More precisely, the work considers an
-periodic product of a free periodic group of rank 2 and an infinite cyclic group. It is proved that in this product, the probability of satisfying the identity
tends to 1, but it does not hold on the entire product. |
doi_str_mv | 10.3103/S1068362324700304 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3149238258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149238258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-95b33d33b386d4fc836fdc76d9b361e87d8ee6c4df966aa2d5e04366e60242173</originalsourceid><addsrcrecordid>eNp1UE1LAzEUDKJgrf4AbwtejSZ52WxylKJtoaBgPYfdJCspNVmT3YP_3pQKHsTTG5iPNwxC15TcASVw_0qJkCAYMN4QAoSfoBlVwLHiVJwWXGh84M_RRc47QuqC-QzdvqTYtZ3f-zx6U62tC6MfvcuVD1XA25iyj6FapjgN-RKd9e0-u6ufO0dvT4_bxQpvnpfrxcMGG6rkiFXdAViADqSwvDelV29NI6zqQFAnGyudE4bbXgnRtszWjnAQwgnCOKMNzNHNMXdI8XNyedS7OKVQXmqgXDGQrJZFRY8qk2LOyfV6SP6jTV-aEn0YRf8ZpXjY0ZOLNry79Jv8v-kbug5hfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149238258</pqid></control><display><type>article</type><title>Probabilistic Identities in n-Torsion Groups</title><source>Springer Nature - Complete Springer Journals</source><creator>Atabekyan, V. S. ; Bayramyan, A. A.</creator><creatorcontrib>Atabekyan, V. S. ; Bayramyan, A. A.</creatorcontrib><description>In this paper, a 3-generated infinite group is constructed in which the probability of satisfying a certain fixed identity tends to 1. At the same time, this identity is not satisfied throughout the entire group. The question of the existence of such a group was recently posed by several authors. More precisely, the work considers an
-periodic product of a free periodic group of rank 2 and an infinite cyclic group. It is proved that in this product, the probability of satisfying the identity
tends to 1, but it does not hold on the entire product.</description><identifier>ISSN: 1068-3623</identifier><identifier>EISSN: 1934-9416</identifier><identifier>DOI: 10.3103/S1068362324700304</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Mathematics ; Mathematics and Statistics ; Statistical analysis</subject><ispartof>Journal of contemporary mathematical analysis, 2024-12, Vol.59 (6), p.455-459</ispartof><rights>Allerton Press, Inc. 2024 ISSN 1068-3623, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2024, Vol. 59, No. 6, pp. 455–459. © Allerton Press, Inc., 2024. Russian Text © The Author(s), 2024, published in Izvestiya Natsional’noi Akademii Nauk Armenii, Matematika, 2024, No. 6, pp. 3–9.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-95b33d33b386d4fc836fdc76d9b361e87d8ee6c4df966aa2d5e04366e60242173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1068362324700304$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1068362324700304$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Atabekyan, V. S.</creatorcontrib><creatorcontrib>Bayramyan, A. A.</creatorcontrib><title>Probabilistic Identities in n-Torsion Groups</title><title>Journal of contemporary mathematical analysis</title><addtitle>J. Contemp. Mathemat. Anal</addtitle><description>In this paper, a 3-generated infinite group is constructed in which the probability of satisfying a certain fixed identity tends to 1. At the same time, this identity is not satisfied throughout the entire group. The question of the existence of such a group was recently posed by several authors. More precisely, the work considers an
-periodic product of a free periodic group of rank 2 and an infinite cyclic group. It is proved that in this product, the probability of satisfying the identity
tends to 1, but it does not hold on the entire product.</description><subject>Algebra</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Statistical analysis</subject><issn>1068-3623</issn><issn>1934-9416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEUDKJgrf4AbwtejSZ52WxylKJtoaBgPYfdJCspNVmT3YP_3pQKHsTTG5iPNwxC15TcASVw_0qJkCAYMN4QAoSfoBlVwLHiVJwWXGh84M_RRc47QuqC-QzdvqTYtZ3f-zx6U62tC6MfvcuVD1XA25iyj6FapjgN-RKd9e0-u6ufO0dvT4_bxQpvnpfrxcMGG6rkiFXdAViADqSwvDelV29NI6zqQFAnGyudE4bbXgnRtszWjnAQwgnCOKMNzNHNMXdI8XNyedS7OKVQXmqgXDGQrJZFRY8qk2LOyfV6SP6jTV-aEn0YRf8ZpXjY0ZOLNry79Jv8v-kbug5hfg</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Atabekyan, V. S.</creator><creator>Bayramyan, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>Probabilistic Identities in n-Torsion Groups</title><author>Atabekyan, V. S. ; Bayramyan, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-95b33d33b386d4fc836fdc76d9b361e87d8ee6c4df966aa2d5e04366e60242173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atabekyan, V. S.</creatorcontrib><creatorcontrib>Bayramyan, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of contemporary mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atabekyan, V. S.</au><au>Bayramyan, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic Identities in n-Torsion Groups</atitle><jtitle>Journal of contemporary mathematical analysis</jtitle><stitle>J. Contemp. Mathemat. Anal</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>59</volume><issue>6</issue><spage>455</spage><epage>459</epage><pages>455-459</pages><issn>1068-3623</issn><eissn>1934-9416</eissn><abstract>In this paper, a 3-generated infinite group is constructed in which the probability of satisfying a certain fixed identity tends to 1. At the same time, this identity is not satisfied throughout the entire group. The question of the existence of such a group was recently posed by several authors. More precisely, the work considers an
-periodic product of a free periodic group of rank 2 and an infinite cyclic group. It is proved that in this product, the probability of satisfying the identity
tends to 1, but it does not hold on the entire product.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1068362324700304</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1068-3623 |
ispartof | Journal of contemporary mathematical analysis, 2024-12, Vol.59 (6), p.455-459 |
issn | 1068-3623 1934-9416 |
language | eng |
recordid | cdi_proquest_journals_3149238258 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebra Mathematics Mathematics and Statistics Statistical analysis |
title | Probabilistic Identities in n-Torsion Groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A35%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20Identities%20in%20n-Torsion%20Groups&rft.jtitle=Journal%20of%20contemporary%20mathematical%20analysis&rft.au=Atabekyan,%20V.%20S.&rft.date=2024-12-01&rft.volume=59&rft.issue=6&rft.spage=455&rft.epage=459&rft.pages=455-459&rft.issn=1068-3623&rft.eissn=1934-9416&rft_id=info:doi/10.3103/S1068362324700304&rft_dat=%3Cproquest_cross%3E3149238258%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149238258&rft_id=info:pmid/&rfr_iscdi=true |