Improved Robust Estimation Techniques for the Scale Parameter of Birnbaum-Saunders Distribution

This study investigates the performance of improved estimation of robust estimators for the scale parameter of Birnbaum-Saunders distribution integrating sample information and unknown previous knowledge (non-sample information) by fixing the shape parameter. The three classes of point estimation te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistics (Lahore) 2024-12, Vol.28, p.18
Hauptverfasser: Makhdoom, Waqas, Javaid, Muhammad Haris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 18
container_title Journal of statistics (Lahore)
container_volume 28
creator Makhdoom, Waqas
Javaid, Muhammad Haris
description This study investigates the performance of improved estimation of robust estimators for the scale parameter of Birnbaum-Saunders distribution integrating sample information and unknown previous knowledge (non-sample information) by fixing the shape parameter. The three classes of point estimation techniques, linear shrinkage robust estimator, preliminary test robust estimator, and shrinkage preliminary test robust estimator are suggested for more efficient estimation. It is also recommended to use a Wald's test statistic to examine the non-sample data. The asymptotic theoretical properties of the recommended estimators are examined through simulation studies. The performance of the estimators is being evaluated based on simulated relative efficiency. Our simulation results decisively support asymptotic theory. A real data application is also carried out to demonstrate how effectively the suggested estimating methods work in practice.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3149209201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149209201</sourcerecordid><originalsourceid>FETCH-proquest_journals_31492092013</originalsourceid><addsrcrecordid>eNqNjc8KgkAYxPdQkJTv8EFnQXMzu1ZG3SK9y6qfuOLu1v7p-VuhB2gYmMMMv1mQIMlyGuU0TlckNGaMvfb0kNE0IPVdvLT6YAdP1ThjoTCWC2a5klBhO0j-dmigVxrsgFC2bEJ4MM0EWtSgejhxLRvmRFQyJzvUBi7cWM0bN0M2ZNmzyWD4yzXZXovqfIv860y29aiclr6q04Qed7F3kv63-gLhwETv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149209201</pqid></control><display><type>article</type><title>Improved Robust Estimation Techniques for the Scale Parameter of Birnbaum-Saunders Distribution</title><source>Alma/SFX Local Collection</source><creator>Makhdoom, Waqas ; Javaid, Muhammad Haris</creator><creatorcontrib>Makhdoom, Waqas ; Javaid, Muhammad Haris</creatorcontrib><description>This study investigates the performance of improved estimation of robust estimators for the scale parameter of Birnbaum-Saunders distribution integrating sample information and unknown previous knowledge (non-sample information) by fixing the shape parameter. The three classes of point estimation techniques, linear shrinkage robust estimator, preliminary test robust estimator, and shrinkage preliminary test robust estimator are suggested for more efficient estimation. It is also recommended to use a Wald's test statistic to examine the non-sample data. The asymptotic theoretical properties of the recommended estimators are examined through simulation studies. The performance of the estimators is being evaluated based on simulated relative efficiency. Our simulation results decisively support asymptotic theory. A real data application is also carried out to demonstrate how effectively the suggested estimating methods work in practice.</description><identifier>ISSN: 1684-8403</identifier><language>eng</language><publisher>Lahore: AsiaNet Pakistan (Pvt) Ltd</publisher><subject>Asymptotic methods ; Asymptotic properties ; Estimators ; Mean square errors ; Normal distribution ; Parameter estimation ; Parameter robustness ; Performance evaluation ; Random variables ; Robustness ; Shrinkage ; Simulation</subject><ispartof>Journal of statistics (Lahore), 2024-12, Vol.28, p.18</ispartof><rights>(c)2024 Journal of Statistics</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Makhdoom, Waqas</creatorcontrib><creatorcontrib>Javaid, Muhammad Haris</creatorcontrib><title>Improved Robust Estimation Techniques for the Scale Parameter of Birnbaum-Saunders Distribution</title><title>Journal of statistics (Lahore)</title><description>This study investigates the performance of improved estimation of robust estimators for the scale parameter of Birnbaum-Saunders distribution integrating sample information and unknown previous knowledge (non-sample information) by fixing the shape parameter. The three classes of point estimation techniques, linear shrinkage robust estimator, preliminary test robust estimator, and shrinkage preliminary test robust estimator are suggested for more efficient estimation. It is also recommended to use a Wald's test statistic to examine the non-sample data. The asymptotic theoretical properties of the recommended estimators are examined through simulation studies. The performance of the estimators is being evaluated based on simulated relative efficiency. Our simulation results decisively support asymptotic theory. A real data application is also carried out to demonstrate how effectively the suggested estimating methods work in practice.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Estimators</subject><subject>Mean square errors</subject><subject>Normal distribution</subject><subject>Parameter estimation</subject><subject>Parameter robustness</subject><subject>Performance evaluation</subject><subject>Random variables</subject><subject>Robustness</subject><subject>Shrinkage</subject><subject>Simulation</subject><issn>1684-8403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNjc8KgkAYxPdQkJTv8EFnQXMzu1ZG3SK9y6qfuOLu1v7p-VuhB2gYmMMMv1mQIMlyGuU0TlckNGaMvfb0kNE0IPVdvLT6YAdP1ThjoTCWC2a5klBhO0j-dmigVxrsgFC2bEJ4MM0EWtSgejhxLRvmRFQyJzvUBi7cWM0bN0M2ZNmzyWD4yzXZXovqfIv860y29aiclr6q04Qed7F3kv63-gLhwETv</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Makhdoom, Waqas</creator><creator>Javaid, Muhammad Haris</creator><general>AsiaNet Pakistan (Pvt) Ltd</general><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20241231</creationdate><title>Improved Robust Estimation Techniques for the Scale Parameter of Birnbaum-Saunders Distribution</title><author>Makhdoom, Waqas ; Javaid, Muhammad Haris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31492092013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Estimators</topic><topic>Mean square errors</topic><topic>Normal distribution</topic><topic>Parameter estimation</topic><topic>Parameter robustness</topic><topic>Performance evaluation</topic><topic>Random variables</topic><topic>Robustness</topic><topic>Shrinkage</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Makhdoom, Waqas</creatorcontrib><creatorcontrib>Javaid, Muhammad Haris</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of statistics (Lahore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Makhdoom, Waqas</au><au>Javaid, Muhammad Haris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Robust Estimation Techniques for the Scale Parameter of Birnbaum-Saunders Distribution</atitle><jtitle>Journal of statistics (Lahore)</jtitle><date>2024-12-31</date><risdate>2024</risdate><volume>28</volume><spage>18</spage><pages>18-</pages><issn>1684-8403</issn><abstract>This study investigates the performance of improved estimation of robust estimators for the scale parameter of Birnbaum-Saunders distribution integrating sample information and unknown previous knowledge (non-sample information) by fixing the shape parameter. The three classes of point estimation techniques, linear shrinkage robust estimator, preliminary test robust estimator, and shrinkage preliminary test robust estimator are suggested for more efficient estimation. It is also recommended to use a Wald's test statistic to examine the non-sample data. The asymptotic theoretical properties of the recommended estimators are examined through simulation studies. The performance of the estimators is being evaluated based on simulated relative efficiency. Our simulation results decisively support asymptotic theory. A real data application is also carried out to demonstrate how effectively the suggested estimating methods work in practice.</abstract><cop>Lahore</cop><pub>AsiaNet Pakistan (Pvt) Ltd</pub></addata></record>
fulltext fulltext
identifier ISSN: 1684-8403
ispartof Journal of statistics (Lahore), 2024-12, Vol.28, p.18
issn 1684-8403
language eng
recordid cdi_proquest_journals_3149209201
source Alma/SFX Local Collection
subjects Asymptotic methods
Asymptotic properties
Estimators
Mean square errors
Normal distribution
Parameter estimation
Parameter robustness
Performance evaluation
Random variables
Robustness
Shrinkage
Simulation
title Improved Robust Estimation Techniques for the Scale Parameter of Birnbaum-Saunders Distribution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A50%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Robust%20Estimation%20Techniques%20for%20the%20Scale%20Parameter%20of%20Birnbaum-Saunders%20Distribution&rft.jtitle=Journal%20of%20statistics%20(Lahore)&rft.au=Makhdoom,%20Waqas&rft.date=2024-12-31&rft.volume=28&rft.spage=18&rft.pages=18-&rft.issn=1684-8403&rft_id=info:doi/&rft_dat=%3Cproquest%3E3149209201%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149209201&rft_id=info:pmid/&rfr_iscdi=true