Reducing QUBO Density by Factoring Out Semi-Symmetries

Quantum Approximate Optimization Algorithm (QAOA) and Quantum Annealing are prominent approaches for solving combinatorial optimization problems, such as those formulated as Quadratic Unconstrained Binary Optimization (QUBO). These algorithms aim to minimize the objective function \(x^T Q x\), where...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Nüßlein, Jonas, Sünkel, Leo, Stein, Jonas, Rohe, Tobias, Schuman, Daniëlle, Feld, Sebastian, O'Meara, Corey, Cortiana, Girogio, Linnhoff-Popien, Claudia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Nüßlein, Jonas
Sünkel, Leo
Stein, Jonas
Rohe, Tobias
Schuman, Daniëlle
Feld, Sebastian
O'Meara, Corey
Cortiana, Girogio
Linnhoff-Popien, Claudia
description Quantum Approximate Optimization Algorithm (QAOA) and Quantum Annealing are prominent approaches for solving combinatorial optimization problems, such as those formulated as Quadratic Unconstrained Binary Optimization (QUBO). These algorithms aim to minimize the objective function \(x^T Q x\), where \(Q\) is a QUBO matrix. However, the number of two-qubit CNOT gates in QAOA circuits and the complexity of problem embeddings in Quantum Annealing scale linearly with the number of non-zero couplings in \(Q\), contributing to significant computational and error-related challenges. To address this, we introduce the concept of \textit{semi-symmetries} in QUBO matrices and propose an algorithm for identifying and factoring these symmetries into ancilla qubits. \textit{Semi-symmetries} frequently arise in optimization problems such as \textit{Maximum Clique}, \textit{Hamilton Cycles}, \textit{Graph Coloring}, and \textit{Graph Isomorphism}. We theoretically demonstrate that the modified QUBO matrix \(Q_{\text{mod}}\) retains the same energy spectrum as the original \(Q\). Experimental evaluations on the aforementioned problems show that our algorithm reduces the number of couplings and QAOA circuit depth by up to \(45\%\). For Quantum Annealing, these reductions also lead to sparser problem embeddings, shorter qubit chains and better performance. This work highlights the utility of exploiting QUBO matrix structure to optimize quantum algorithms, advancing their scalability and practical applicability to real-world combinatorial problems.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3149107414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149107414</sourcerecordid><originalsourceid>FETCH-proquest_journals_31491074143</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwC0pNKU3OzEtXCAx18ldwSc0rziypVEiqVHBLTC7JLwLJ-JeWKASn5mbqBlfm5qaWFGWmFvMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyxoYmloYG5iaGJMXGqAHNjNKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149107414</pqid></control><display><type>article</type><title>Reducing QUBO Density by Factoring Out Semi-Symmetries</title><source>Open Access Journals</source><creator>Nüßlein, Jonas ; Sünkel, Leo ; Stein, Jonas ; Rohe, Tobias ; Schuman, Daniëlle ; Feld, Sebastian ; O'Meara, Corey ; Cortiana, Girogio ; Linnhoff-Popien, Claudia</creator><creatorcontrib>Nüßlein, Jonas ; Sünkel, Leo ; Stein, Jonas ; Rohe, Tobias ; Schuman, Daniëlle ; Feld, Sebastian ; O'Meara, Corey ; Cortiana, Girogio ; Linnhoff-Popien, Claudia</creatorcontrib><description>Quantum Approximate Optimization Algorithm (QAOA) and Quantum Annealing are prominent approaches for solving combinatorial optimization problems, such as those formulated as Quadratic Unconstrained Binary Optimization (QUBO). These algorithms aim to minimize the objective function \(x^T Q x\), where \(Q\) is a QUBO matrix. However, the number of two-qubit CNOT gates in QAOA circuits and the complexity of problem embeddings in Quantum Annealing scale linearly with the number of non-zero couplings in \(Q\), contributing to significant computational and error-related challenges. To address this, we introduce the concept of \textit{semi-symmetries} in QUBO matrices and propose an algorithm for identifying and factoring these symmetries into ancilla qubits. \textit{Semi-symmetries} frequently arise in optimization problems such as \textit{Maximum Clique}, \textit{Hamilton Cycles}, \textit{Graph Coloring}, and \textit{Graph Isomorphism}. We theoretically demonstrate that the modified QUBO matrix \(Q_{\text{mod}}\) retains the same energy spectrum as the original \(Q\). Experimental evaluations on the aforementioned problems show that our algorithm reduces the number of couplings and QAOA circuit depth by up to \(45\%\). For Quantum Annealing, these reductions also lead to sparser problem embeddings, shorter qubit chains and better performance. This work highlights the utility of exploiting QUBO matrix structure to optimize quantum algorithms, advancing their scalability and practical applicability to real-world combinatorial problems.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Combinatorial analysis ; Couplings ; Energy spectra ; Gates (circuits) ; Graph coloring ; Isomorphism ; Optimization ; Qubits (quantum computing)</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Nüßlein, Jonas</creatorcontrib><creatorcontrib>Sünkel, Leo</creatorcontrib><creatorcontrib>Stein, Jonas</creatorcontrib><creatorcontrib>Rohe, Tobias</creatorcontrib><creatorcontrib>Schuman, Daniëlle</creatorcontrib><creatorcontrib>Feld, Sebastian</creatorcontrib><creatorcontrib>O'Meara, Corey</creatorcontrib><creatorcontrib>Cortiana, Girogio</creatorcontrib><creatorcontrib>Linnhoff-Popien, Claudia</creatorcontrib><title>Reducing QUBO Density by Factoring Out Semi-Symmetries</title><title>arXiv.org</title><description>Quantum Approximate Optimization Algorithm (QAOA) and Quantum Annealing are prominent approaches for solving combinatorial optimization problems, such as those formulated as Quadratic Unconstrained Binary Optimization (QUBO). These algorithms aim to minimize the objective function \(x^T Q x\), where \(Q\) is a QUBO matrix. However, the number of two-qubit CNOT gates in QAOA circuits and the complexity of problem embeddings in Quantum Annealing scale linearly with the number of non-zero couplings in \(Q\), contributing to significant computational and error-related challenges. To address this, we introduce the concept of \textit{semi-symmetries} in QUBO matrices and propose an algorithm for identifying and factoring these symmetries into ancilla qubits. \textit{Semi-symmetries} frequently arise in optimization problems such as \textit{Maximum Clique}, \textit{Hamilton Cycles}, \textit{Graph Coloring}, and \textit{Graph Isomorphism}. We theoretically demonstrate that the modified QUBO matrix \(Q_{\text{mod}}\) retains the same energy spectrum as the original \(Q\). Experimental evaluations on the aforementioned problems show that our algorithm reduces the number of couplings and QAOA circuit depth by up to \(45\%\). For Quantum Annealing, these reductions also lead to sparser problem embeddings, shorter qubit chains and better performance. This work highlights the utility of exploiting QUBO matrix structure to optimize quantum algorithms, advancing their scalability and practical applicability to real-world combinatorial problems.</description><subject>Algorithms</subject><subject>Combinatorial analysis</subject><subject>Couplings</subject><subject>Energy spectra</subject><subject>Gates (circuits)</subject><subject>Graph coloring</subject><subject>Isomorphism</subject><subject>Optimization</subject><subject>Qubits (quantum computing)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQwC0pNKU3OzEtXCAx18ldwSc0rziypVEiqVHBLTC7JLwLJ-JeWKASn5mbqBlfm5qaWFGWmFvMwsKYl5hSn8kJpbgZlN9cQZw_dgqL8wtLU4pL4rPzSojygVLyxoYmloYG5iaGJMXGqAHNjNKQ</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Nüßlein, Jonas</creator><creator>Sünkel, Leo</creator><creator>Stein, Jonas</creator><creator>Rohe, Tobias</creator><creator>Schuman, Daniëlle</creator><creator>Feld, Sebastian</creator><creator>O'Meara, Corey</creator><creator>Cortiana, Girogio</creator><creator>Linnhoff-Popien, Claudia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241218</creationdate><title>Reducing QUBO Density by Factoring Out Semi-Symmetries</title><author>Nüßlein, Jonas ; Sünkel, Leo ; Stein, Jonas ; Rohe, Tobias ; Schuman, Daniëlle ; Feld, Sebastian ; O'Meara, Corey ; Cortiana, Girogio ; Linnhoff-Popien, Claudia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31491074143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Combinatorial analysis</topic><topic>Couplings</topic><topic>Energy spectra</topic><topic>Gates (circuits)</topic><topic>Graph coloring</topic><topic>Isomorphism</topic><topic>Optimization</topic><topic>Qubits (quantum computing)</topic><toplevel>online_resources</toplevel><creatorcontrib>Nüßlein, Jonas</creatorcontrib><creatorcontrib>Sünkel, Leo</creatorcontrib><creatorcontrib>Stein, Jonas</creatorcontrib><creatorcontrib>Rohe, Tobias</creatorcontrib><creatorcontrib>Schuman, Daniëlle</creatorcontrib><creatorcontrib>Feld, Sebastian</creatorcontrib><creatorcontrib>O'Meara, Corey</creatorcontrib><creatorcontrib>Cortiana, Girogio</creatorcontrib><creatorcontrib>Linnhoff-Popien, Claudia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nüßlein, Jonas</au><au>Sünkel, Leo</au><au>Stein, Jonas</au><au>Rohe, Tobias</au><au>Schuman, Daniëlle</au><au>Feld, Sebastian</au><au>O'Meara, Corey</au><au>Cortiana, Girogio</au><au>Linnhoff-Popien, Claudia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Reducing QUBO Density by Factoring Out Semi-Symmetries</atitle><jtitle>arXiv.org</jtitle><date>2024-12-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Quantum Approximate Optimization Algorithm (QAOA) and Quantum Annealing are prominent approaches for solving combinatorial optimization problems, such as those formulated as Quadratic Unconstrained Binary Optimization (QUBO). These algorithms aim to minimize the objective function \(x^T Q x\), where \(Q\) is a QUBO matrix. However, the number of two-qubit CNOT gates in QAOA circuits and the complexity of problem embeddings in Quantum Annealing scale linearly with the number of non-zero couplings in \(Q\), contributing to significant computational and error-related challenges. To address this, we introduce the concept of \textit{semi-symmetries} in QUBO matrices and propose an algorithm for identifying and factoring these symmetries into ancilla qubits. \textit{Semi-symmetries} frequently arise in optimization problems such as \textit{Maximum Clique}, \textit{Hamilton Cycles}, \textit{Graph Coloring}, and \textit{Graph Isomorphism}. We theoretically demonstrate that the modified QUBO matrix \(Q_{\text{mod}}\) retains the same energy spectrum as the original \(Q\). Experimental evaluations on the aforementioned problems show that our algorithm reduces the number of couplings and QAOA circuit depth by up to \(45\%\). For Quantum Annealing, these reductions also lead to sparser problem embeddings, shorter qubit chains and better performance. This work highlights the utility of exploiting QUBO matrix structure to optimize quantum algorithms, advancing their scalability and practical applicability to real-world combinatorial problems.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3149107414
source Open Access Journals
subjects Algorithms
Combinatorial analysis
Couplings
Energy spectra
Gates (circuits)
Graph coloring
Isomorphism
Optimization
Qubits (quantum computing)
title Reducing QUBO Density by Factoring Out Semi-Symmetries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T14%3A19%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Reducing%20QUBO%20Density%20by%20Factoring%20Out%20Semi-Symmetries&rft.jtitle=arXiv.org&rft.au=N%C3%BC%C3%9Flein,%20Jonas&rft.date=2024-12-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3149107414%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149107414&rft_id=info:pmid/&rfr_iscdi=true