Automated and Enhanced Classification of Persea Americana Using Optimized Deep Convolutional Neural Networks With Improved Training Strategies for Agro-Industrial Settings
The agro-industrial sector faces significant challenges in product classification, which directly affect product quality, production efficiency and food safety. This paper proposes a machine learning model that correctly identifies the different attributes of Persea americana. For this, an automatic...
Gespeichert in:
Veröffentlicht in: | IEEE access 2024, Vol.12, p.194240-194255 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194255 |
---|---|
container_issue | |
container_start_page | 194240 |
container_title | IEEE access |
container_volume | 12 |
creator | Vera, Oscar Cruz, Jose Huaquipaco, Severo Mamani, Wilson Yana-Mamani, Victor Huaquipaco, Saul |
description | The agro-industrial sector faces significant challenges in product classification, which directly affect product quality, production efficiency and food safety. This paper proposes a machine learning model that correctly identifies the different attributes of Persea americana. For this, an automatic agro-industrial plant was implemented following industrial standards where advanced image processing techniques were used on a dataset of 346 images for training and 146 images for testing, with three deep convolutional neural networks with improved training strategies and advanced validation techniques including True Skill Statistic (TSS), Cohen's Kappa (K), Threat Score (TS), Heidke Skill Score (HSS) and Probability of Error (Pe). The results showed that the DenseNet model outperforms other state-of-the-art models in accuracy, reaching an F1 score of 99.27%, ResNet 50 reached 99.26% and EfficientNet B4 reached 99.19%, also in the validation phase TSS, K, TS and HSS for all models were higher than 0.98 while the Pe index was higher than 0.55. It is concluded that the DenseNet model is shown to be the effective and reliable technique for the classification of Persea Americana. These promising results open new possibilities for the implementation of machine learning in the agri-food industry. For future research, the possibility of expanding the data set and extending the application of this model to other varieties of fruits is proposed. |
doi_str_mv | 10.1109/ACCESS.2024.3496728 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3149094517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10750816</ieee_id><doaj_id>oai_doaj_org_article_76cd1569b7194d39bad57425e11b3d33</doaj_id><sourcerecordid>3149094517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-ca119457df7b15f0b75ed01060e9cc6c0b330fabca6894ed6b05ff6af42021533</originalsourceid><addsrcrecordid>eNpNkcFu1DAQhiMEElXpE8DBEucsdhzbm2MUFlipokjbiqPl2OOtlyRebKcIXomXxGkqVF_GHs33z3j-onhL8IYQ3Hxou253OGwqXNUbWjdcVNsXxUVFeFNSRvnLZ_fXxVWMJ5zPNqeYuCj-tnPyo0pgkJoM2k33atL50Q0qRmedVsn5CXmLvkGIoFA7QsjZSaG76KYjujknN7o_GfkIcEadnx78MC-QGtBXmMNjSL98-BHRd5fu0X48B_-Qgdug3LRoHFLIExwdRGR9QO0x-HI_mTmm4DJ-gJRyWXxTvLJqiHD1FC-Lu0-72-5LeX3zed-116Wu6jqVWhHS1EwYK3rCLO4FA4MJ5hgarbnGPaXYql4rvm1qMLzHzFqubJ1XSBill8V-1TVeneQ5uFGF39IrJx8TPhylCsnpAaTg2hDGm17kloY2vTJM1BUDQnpq6KL1ftXKf_45Q0zy5OeQdxMlJXWD86BE5Cq6VungYwxg_3clWC4my9VkuZgsn0zO1LuVcgDwjBBssZf-AxoTpjw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149094517</pqid></control><display><type>article</type><title>Automated and Enhanced Classification of Persea Americana Using Optimized Deep Convolutional Neural Networks With Improved Training Strategies for Agro-Industrial Settings</title><source>Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Vera, Oscar ; Cruz, Jose ; Huaquipaco, Severo ; Mamani, Wilson ; Yana-Mamani, Victor ; Huaquipaco, Saul</creator><creatorcontrib>Vera, Oscar ; Cruz, Jose ; Huaquipaco, Severo ; Mamani, Wilson ; Yana-Mamani, Victor ; Huaquipaco, Saul</creatorcontrib><description>The agro-industrial sector faces significant challenges in product classification, which directly affect product quality, production efficiency and food safety. This paper proposes a machine learning model that correctly identifies the different attributes of Persea americana. For this, an automatic agro-industrial plant was implemented following industrial standards where advanced image processing techniques were used on a dataset of 346 images for training and 146 images for testing, with three deep convolutional neural networks with improved training strategies and advanced validation techniques including True Skill Statistic (TSS), Cohen's Kappa (K), Threat Score (TS), Heidke Skill Score (HSS) and Probability of Error (Pe). The results showed that the DenseNet model outperforms other state-of-the-art models in accuracy, reaching an F1 score of 99.27%, ResNet 50 reached 99.26% and EfficientNet B4 reached 99.19%, also in the validation phase TSS, K, TS and HSS for all models were higher than 0.98 while the Pe index was higher than 0.55. It is concluded that the DenseNet model is shown to be the effective and reliable technique for the classification of Persea Americana. These promising results open new possibilities for the implementation of machine learning in the agri-food industry. For future research, the possibility of expanding the data set and extending the application of this model to other varieties of fruits is proposed.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3496728</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Classification ; Classification algorithms ; Classification Persea Americana ; Convolutional neural networks ; convolutional neuronal network ; Data models ; DenseNet ; EfficientNet ; Flowcharts ; Image processing ; Image quality ; Image resolution ; Industrial plants ; Machine learning ; Neural networks ; Plant layout ; Reliability ; ResNet ; Sorting ; Statistical analysis ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.194240-194255</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-ca119457df7b15f0b75ed01060e9cc6c0b330fabca6894ed6b05ff6af42021533</cites><orcidid>0000-0003-0982-2353 ; 0000-0002-1996-8471 ; 0000-0002-5201-0265 ; 0000-0003-2323-3061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10750816$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Vera, Oscar</creatorcontrib><creatorcontrib>Cruz, Jose</creatorcontrib><creatorcontrib>Huaquipaco, Severo</creatorcontrib><creatorcontrib>Mamani, Wilson</creatorcontrib><creatorcontrib>Yana-Mamani, Victor</creatorcontrib><creatorcontrib>Huaquipaco, Saul</creatorcontrib><title>Automated and Enhanced Classification of Persea Americana Using Optimized Deep Convolutional Neural Networks With Improved Training Strategies for Agro-Industrial Settings</title><title>IEEE access</title><addtitle>Access</addtitle><description>The agro-industrial sector faces significant challenges in product classification, which directly affect product quality, production efficiency and food safety. This paper proposes a machine learning model that correctly identifies the different attributes of Persea americana. For this, an automatic agro-industrial plant was implemented following industrial standards where advanced image processing techniques were used on a dataset of 346 images for training and 146 images for testing, with three deep convolutional neural networks with improved training strategies and advanced validation techniques including True Skill Statistic (TSS), Cohen's Kappa (K), Threat Score (TS), Heidke Skill Score (HSS) and Probability of Error (Pe). The results showed that the DenseNet model outperforms other state-of-the-art models in accuracy, reaching an F1 score of 99.27%, ResNet 50 reached 99.26% and EfficientNet B4 reached 99.19%, also in the validation phase TSS, K, TS and HSS for all models were higher than 0.98 while the Pe index was higher than 0.55. It is concluded that the DenseNet model is shown to be the effective and reliable technique for the classification of Persea Americana. These promising results open new possibilities for the implementation of machine learning in the agri-food industry. For future research, the possibility of expanding the data set and extending the application of this model to other varieties of fruits is proposed.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Classification Persea Americana</subject><subject>Convolutional neural networks</subject><subject>convolutional neuronal network</subject><subject>Data models</subject><subject>DenseNet</subject><subject>EfficientNet</subject><subject>Flowcharts</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image resolution</subject><subject>Industrial plants</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Plant layout</subject><subject>Reliability</subject><subject>ResNet</subject><subject>Sorting</subject><subject>Statistical analysis</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkcFu1DAQhiMEElXpE8DBEucsdhzbm2MUFlipokjbiqPl2OOtlyRebKcIXomXxGkqVF_GHs33z3j-onhL8IYQ3Hxou253OGwqXNUbWjdcVNsXxUVFeFNSRvnLZ_fXxVWMJ5zPNqeYuCj-tnPyo0pgkJoM2k33atL50Q0qRmedVsn5CXmLvkGIoFA7QsjZSaG76KYjujknN7o_GfkIcEadnx78MC-QGtBXmMNjSL98-BHRd5fu0X48B_-Qgdug3LRoHFLIExwdRGR9QO0x-HI_mTmm4DJ-gJRyWXxTvLJqiHD1FC-Lu0-72-5LeX3zed-116Wu6jqVWhHS1EwYK3rCLO4FA4MJ5hgarbnGPaXYql4rvm1qMLzHzFqubJ1XSBill8V-1TVeneQ5uFGF39IrJx8TPhylCsnpAaTg2hDGm17kloY2vTJM1BUDQnpq6KL1ftXKf_45Q0zy5OeQdxMlJXWD86BE5Cq6VungYwxg_3clWC4my9VkuZgsn0zO1LuVcgDwjBBssZf-AxoTpjw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Vera, Oscar</creator><creator>Cruz, Jose</creator><creator>Huaquipaco, Severo</creator><creator>Mamani, Wilson</creator><creator>Yana-Mamani, Victor</creator><creator>Huaquipaco, Saul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0982-2353</orcidid><orcidid>https://orcid.org/0000-0002-1996-8471</orcidid><orcidid>https://orcid.org/0000-0002-5201-0265</orcidid><orcidid>https://orcid.org/0000-0003-2323-3061</orcidid></search><sort><creationdate>2024</creationdate><title>Automated and Enhanced Classification of Persea Americana Using Optimized Deep Convolutional Neural Networks With Improved Training Strategies for Agro-Industrial Settings</title><author>Vera, Oscar ; Cruz, Jose ; Huaquipaco, Severo ; Mamani, Wilson ; Yana-Mamani, Victor ; Huaquipaco, Saul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-ca119457df7b15f0b75ed01060e9cc6c0b330fabca6894ed6b05ff6af42021533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Classification Persea Americana</topic><topic>Convolutional neural networks</topic><topic>convolutional neuronal network</topic><topic>Data models</topic><topic>DenseNet</topic><topic>EfficientNet</topic><topic>Flowcharts</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image resolution</topic><topic>Industrial plants</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Plant layout</topic><topic>Reliability</topic><topic>ResNet</topic><topic>Sorting</topic><topic>Statistical analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vera, Oscar</creatorcontrib><creatorcontrib>Cruz, Jose</creatorcontrib><creatorcontrib>Huaquipaco, Severo</creatorcontrib><creatorcontrib>Mamani, Wilson</creatorcontrib><creatorcontrib>Yana-Mamani, Victor</creatorcontrib><creatorcontrib>Huaquipaco, Saul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vera, Oscar</au><au>Cruz, Jose</au><au>Huaquipaco, Severo</au><au>Mamani, Wilson</au><au>Yana-Mamani, Victor</au><au>Huaquipaco, Saul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated and Enhanced Classification of Persea Americana Using Optimized Deep Convolutional Neural Networks With Improved Training Strategies for Agro-Industrial Settings</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>194240</spage><epage>194255</epage><pages>194240-194255</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The agro-industrial sector faces significant challenges in product classification, which directly affect product quality, production efficiency and food safety. This paper proposes a machine learning model that correctly identifies the different attributes of Persea americana. For this, an automatic agro-industrial plant was implemented following industrial standards where advanced image processing techniques were used on a dataset of 346 images for training and 146 images for testing, with three deep convolutional neural networks with improved training strategies and advanced validation techniques including True Skill Statistic (TSS), Cohen's Kappa (K), Threat Score (TS), Heidke Skill Score (HSS) and Probability of Error (Pe). The results showed that the DenseNet model outperforms other state-of-the-art models in accuracy, reaching an F1 score of 99.27%, ResNet 50 reached 99.26% and EfficientNet B4 reached 99.19%, also in the validation phase TSS, K, TS and HSS for all models were higher than 0.98 while the Pe index was higher than 0.55. It is concluded that the DenseNet model is shown to be the effective and reliable technique for the classification of Persea Americana. These promising results open new possibilities for the implementation of machine learning in the agri-food industry. For future research, the possibility of expanding the data set and extending the application of this model to other varieties of fruits is proposed.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3496728</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0982-2353</orcidid><orcidid>https://orcid.org/0000-0002-1996-8471</orcidid><orcidid>https://orcid.org/0000-0002-5201-0265</orcidid><orcidid>https://orcid.org/0000-0003-2323-3061</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2024, Vol.12, p.194240-194255 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_3149094517 |
source | Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library |
subjects | Accuracy Artificial neural networks Classification Classification algorithms Classification Persea Americana Convolutional neural networks convolutional neuronal network Data models DenseNet EfficientNet Flowcharts Image processing Image quality Image resolution Industrial plants Machine learning Neural networks Plant layout Reliability ResNet Sorting Statistical analysis Training |
title | Automated and Enhanced Classification of Persea Americana Using Optimized Deep Convolutional Neural Networks With Improved Training Strategies for Agro-Industrial Settings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A38%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20and%20Enhanced%20Classification%20of%20Persea%20Americana%20Using%20Optimized%20Deep%20Convolutional%20Neural%20Networks%20With%20Improved%20Training%20Strategies%20for%20Agro-Industrial%20Settings&rft.jtitle=IEEE%20access&rft.au=Vera,%20Oscar&rft.date=2024&rft.volume=12&rft.spage=194240&rft.epage=194255&rft.pages=194240-194255&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3496728&rft_dat=%3Cproquest_doaj_%3E3149094517%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149094517&rft_id=info:pmid/&rft_ieee_id=10750816&rft_doaj_id=oai_doaj_org_article_76cd1569b7194d39bad57425e11b3d33&rfr_iscdi=true |