Automated and Enhanced Classification of Persea Americana Using Optimized Deep Convolutional Neural Networks With Improved Training Strategies for Agro-Industrial Settings

The agro-industrial sector faces significant challenges in product classification, which directly affect product quality, production efficiency and food safety. This paper proposes a machine learning model that correctly identifies the different attributes of Persea americana. For this, an automatic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2024, Vol.12, p.194240-194255
Hauptverfasser: Vera, Oscar, Cruz, Jose, Huaquipaco, Severo, Mamani, Wilson, Yana-Mamani, Victor, Huaquipaco, Saul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194255
container_issue
container_start_page 194240
container_title IEEE access
container_volume 12
creator Vera, Oscar
Cruz, Jose
Huaquipaco, Severo
Mamani, Wilson
Yana-Mamani, Victor
Huaquipaco, Saul
description The agro-industrial sector faces significant challenges in product classification, which directly affect product quality, production efficiency and food safety. This paper proposes a machine learning model that correctly identifies the different attributes of Persea americana. For this, an automatic agro-industrial plant was implemented following industrial standards where advanced image processing techniques were used on a dataset of 346 images for training and 146 images for testing, with three deep convolutional neural networks with improved training strategies and advanced validation techniques including True Skill Statistic (TSS), Cohen's Kappa (K), Threat Score (TS), Heidke Skill Score (HSS) and Probability of Error (Pe). The results showed that the DenseNet model outperforms other state-of-the-art models in accuracy, reaching an F1 score of 99.27%, ResNet 50 reached 99.26% and EfficientNet B4 reached 99.19%, also in the validation phase TSS, K, TS and HSS for all models were higher than 0.98 while the Pe index was higher than 0.55. It is concluded that the DenseNet model is shown to be the effective and reliable technique for the classification of Persea Americana. These promising results open new possibilities for the implementation of machine learning in the agri-food industry. For future research, the possibility of expanding the data set and extending the application of this model to other varieties of fruits is proposed.
doi_str_mv 10.1109/ACCESS.2024.3496728
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3149094517</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10750816</ieee_id><doaj_id>oai_doaj_org_article_76cd1569b7194d39bad57425e11b3d33</doaj_id><sourcerecordid>3149094517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-ca119457df7b15f0b75ed01060e9cc6c0b330fabca6894ed6b05ff6af42021533</originalsourceid><addsrcrecordid>eNpNkcFu1DAQhiMEElXpE8DBEucsdhzbm2MUFlipokjbiqPl2OOtlyRebKcIXomXxGkqVF_GHs33z3j-onhL8IYQ3Hxou253OGwqXNUbWjdcVNsXxUVFeFNSRvnLZ_fXxVWMJ5zPNqeYuCj-tnPyo0pgkJoM2k33atL50Q0qRmedVsn5CXmLvkGIoFA7QsjZSaG76KYjujknN7o_GfkIcEadnx78MC-QGtBXmMNjSL98-BHRd5fu0X48B_-Qgdug3LRoHFLIExwdRGR9QO0x-HI_mTmm4DJ-gJRyWXxTvLJqiHD1FC-Lu0-72-5LeX3zed-116Wu6jqVWhHS1EwYK3rCLO4FA4MJ5hgarbnGPaXYql4rvm1qMLzHzFqubJ1XSBill8V-1TVeneQ5uFGF39IrJx8TPhylCsnpAaTg2hDGm17kloY2vTJM1BUDQnpq6KL1ftXKf_45Q0zy5OeQdxMlJXWD86BE5Cq6VungYwxg_3clWC4my9VkuZgsn0zO1LuVcgDwjBBssZf-AxoTpjw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149094517</pqid></control><display><type>article</type><title>Automated and Enhanced Classification of Persea Americana Using Optimized Deep Convolutional Neural Networks With Improved Training Strategies for Agro-Industrial Settings</title><source>Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Vera, Oscar ; Cruz, Jose ; Huaquipaco, Severo ; Mamani, Wilson ; Yana-Mamani, Victor ; Huaquipaco, Saul</creator><creatorcontrib>Vera, Oscar ; Cruz, Jose ; Huaquipaco, Severo ; Mamani, Wilson ; Yana-Mamani, Victor ; Huaquipaco, Saul</creatorcontrib><description>The agro-industrial sector faces significant challenges in product classification, which directly affect product quality, production efficiency and food safety. This paper proposes a machine learning model that correctly identifies the different attributes of Persea americana. For this, an automatic agro-industrial plant was implemented following industrial standards where advanced image processing techniques were used on a dataset of 346 images for training and 146 images for testing, with three deep convolutional neural networks with improved training strategies and advanced validation techniques including True Skill Statistic (TSS), Cohen's Kappa (K), Threat Score (TS), Heidke Skill Score (HSS) and Probability of Error (Pe). The results showed that the DenseNet model outperforms other state-of-the-art models in accuracy, reaching an F1 score of 99.27%, ResNet 50 reached 99.26% and EfficientNet B4 reached 99.19%, also in the validation phase TSS, K, TS and HSS for all models were higher than 0.98 while the Pe index was higher than 0.55. It is concluded that the DenseNet model is shown to be the effective and reliable technique for the classification of Persea Americana. These promising results open new possibilities for the implementation of machine learning in the agri-food industry. For future research, the possibility of expanding the data set and extending the application of this model to other varieties of fruits is proposed.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2024.3496728</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; Artificial neural networks ; Classification ; Classification algorithms ; Classification Persea Americana ; Convolutional neural networks ; convolutional neuronal network ; Data models ; DenseNet ; EfficientNet ; Flowcharts ; Image processing ; Image quality ; Image resolution ; Industrial plants ; Machine learning ; Neural networks ; Plant layout ; Reliability ; ResNet ; Sorting ; Statistical analysis ; Training</subject><ispartof>IEEE access, 2024, Vol.12, p.194240-194255</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-ca119457df7b15f0b75ed01060e9cc6c0b330fabca6894ed6b05ff6af42021533</cites><orcidid>0000-0003-0982-2353 ; 0000-0002-1996-8471 ; 0000-0002-5201-0265 ; 0000-0003-2323-3061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10750816$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2095,4009,27612,27902,27903,27904,54911</link.rule.ids></links><search><creatorcontrib>Vera, Oscar</creatorcontrib><creatorcontrib>Cruz, Jose</creatorcontrib><creatorcontrib>Huaquipaco, Severo</creatorcontrib><creatorcontrib>Mamani, Wilson</creatorcontrib><creatorcontrib>Yana-Mamani, Victor</creatorcontrib><creatorcontrib>Huaquipaco, Saul</creatorcontrib><title>Automated and Enhanced Classification of Persea Americana Using Optimized Deep Convolutional Neural Networks With Improved Training Strategies for Agro-Industrial Settings</title><title>IEEE access</title><addtitle>Access</addtitle><description>The agro-industrial sector faces significant challenges in product classification, which directly affect product quality, production efficiency and food safety. This paper proposes a machine learning model that correctly identifies the different attributes of Persea americana. For this, an automatic agro-industrial plant was implemented following industrial standards where advanced image processing techniques were used on a dataset of 346 images for training and 146 images for testing, with three deep convolutional neural networks with improved training strategies and advanced validation techniques including True Skill Statistic (TSS), Cohen's Kappa (K), Threat Score (TS), Heidke Skill Score (HSS) and Probability of Error (Pe). The results showed that the DenseNet model outperforms other state-of-the-art models in accuracy, reaching an F1 score of 99.27%, ResNet 50 reached 99.26% and EfficientNet B4 reached 99.19%, also in the validation phase TSS, K, TS and HSS for all models were higher than 0.98 while the Pe index was higher than 0.55. It is concluded that the DenseNet model is shown to be the effective and reliable technique for the classification of Persea Americana. These promising results open new possibilities for the implementation of machine learning in the agri-food industry. For future research, the possibility of expanding the data set and extending the application of this model to other varieties of fruits is proposed.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Classification</subject><subject>Classification algorithms</subject><subject>Classification Persea Americana</subject><subject>Convolutional neural networks</subject><subject>convolutional neuronal network</subject><subject>Data models</subject><subject>DenseNet</subject><subject>EfficientNet</subject><subject>Flowcharts</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image resolution</subject><subject>Industrial plants</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Plant layout</subject><subject>Reliability</subject><subject>ResNet</subject><subject>Sorting</subject><subject>Statistical analysis</subject><subject>Training</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkcFu1DAQhiMEElXpE8DBEucsdhzbm2MUFlipokjbiqPl2OOtlyRebKcIXomXxGkqVF_GHs33z3j-onhL8IYQ3Hxou253OGwqXNUbWjdcVNsXxUVFeFNSRvnLZ_fXxVWMJ5zPNqeYuCj-tnPyo0pgkJoM2k33atL50Q0qRmedVsn5CXmLvkGIoFA7QsjZSaG76KYjujknN7o_GfkIcEadnx78MC-QGtBXmMNjSL98-BHRd5fu0X48B_-Qgdug3LRoHFLIExwdRGR9QO0x-HI_mTmm4DJ-gJRyWXxTvLJqiHD1FC-Lu0-72-5LeX3zed-116Wu6jqVWhHS1EwYK3rCLO4FA4MJ5hgarbnGPaXYql4rvm1qMLzHzFqubJ1XSBill8V-1TVeneQ5uFGF39IrJx8TPhylCsnpAaTg2hDGm17kloY2vTJM1BUDQnpq6KL1ftXKf_45Q0zy5OeQdxMlJXWD86BE5Cq6VungYwxg_3clWC4my9VkuZgsn0zO1LuVcgDwjBBssZf-AxoTpjw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Vera, Oscar</creator><creator>Cruz, Jose</creator><creator>Huaquipaco, Severo</creator><creator>Mamani, Wilson</creator><creator>Yana-Mamani, Victor</creator><creator>Huaquipaco, Saul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0982-2353</orcidid><orcidid>https://orcid.org/0000-0002-1996-8471</orcidid><orcidid>https://orcid.org/0000-0002-5201-0265</orcidid><orcidid>https://orcid.org/0000-0003-2323-3061</orcidid></search><sort><creationdate>2024</creationdate><title>Automated and Enhanced Classification of Persea Americana Using Optimized Deep Convolutional Neural Networks With Improved Training Strategies for Agro-Industrial Settings</title><author>Vera, Oscar ; Cruz, Jose ; Huaquipaco, Severo ; Mamani, Wilson ; Yana-Mamani, Victor ; Huaquipaco, Saul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-ca119457df7b15f0b75ed01060e9cc6c0b330fabca6894ed6b05ff6af42021533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Classification</topic><topic>Classification algorithms</topic><topic>Classification Persea Americana</topic><topic>Convolutional neural networks</topic><topic>convolutional neuronal network</topic><topic>Data models</topic><topic>DenseNet</topic><topic>EfficientNet</topic><topic>Flowcharts</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image resolution</topic><topic>Industrial plants</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Plant layout</topic><topic>Reliability</topic><topic>ResNet</topic><topic>Sorting</topic><topic>Statistical analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vera, Oscar</creatorcontrib><creatorcontrib>Cruz, Jose</creatorcontrib><creatorcontrib>Huaquipaco, Severo</creatorcontrib><creatorcontrib>Mamani, Wilson</creatorcontrib><creatorcontrib>Yana-Mamani, Victor</creatorcontrib><creatorcontrib>Huaquipaco, Saul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vera, Oscar</au><au>Cruz, Jose</au><au>Huaquipaco, Severo</au><au>Mamani, Wilson</au><au>Yana-Mamani, Victor</au><au>Huaquipaco, Saul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated and Enhanced Classification of Persea Americana Using Optimized Deep Convolutional Neural Networks With Improved Training Strategies for Agro-Industrial Settings</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2024</date><risdate>2024</risdate><volume>12</volume><spage>194240</spage><epage>194255</epage><pages>194240-194255</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The agro-industrial sector faces significant challenges in product classification, which directly affect product quality, production efficiency and food safety. This paper proposes a machine learning model that correctly identifies the different attributes of Persea americana. For this, an automatic agro-industrial plant was implemented following industrial standards where advanced image processing techniques were used on a dataset of 346 images for training and 146 images for testing, with three deep convolutional neural networks with improved training strategies and advanced validation techniques including True Skill Statistic (TSS), Cohen's Kappa (K), Threat Score (TS), Heidke Skill Score (HSS) and Probability of Error (Pe). The results showed that the DenseNet model outperforms other state-of-the-art models in accuracy, reaching an F1 score of 99.27%, ResNet 50 reached 99.26% and EfficientNet B4 reached 99.19%, also in the validation phase TSS, K, TS and HSS for all models were higher than 0.98 while the Pe index was higher than 0.55. It is concluded that the DenseNet model is shown to be the effective and reliable technique for the classification of Persea Americana. These promising results open new possibilities for the implementation of machine learning in the agri-food industry. For future research, the possibility of expanding the data set and extending the application of this model to other varieties of fruits is proposed.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2024.3496728</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0982-2353</orcidid><orcidid>https://orcid.org/0000-0002-1996-8471</orcidid><orcidid>https://orcid.org/0000-0002-5201-0265</orcidid><orcidid>https://orcid.org/0000-0003-2323-3061</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2024, Vol.12, p.194240-194255
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_3149094517
source Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Accuracy
Artificial neural networks
Classification
Classification algorithms
Classification Persea Americana
Convolutional neural networks
convolutional neuronal network
Data models
DenseNet
EfficientNet
Flowcharts
Image processing
Image quality
Image resolution
Industrial plants
Machine learning
Neural networks
Plant layout
Reliability
ResNet
Sorting
Statistical analysis
Training
title Automated and Enhanced Classification of Persea Americana Using Optimized Deep Convolutional Neural Networks With Improved Training Strategies for Agro-Industrial Settings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A38%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20and%20Enhanced%20Classification%20of%20Persea%20Americana%20Using%20Optimized%20Deep%20Convolutional%20Neural%20Networks%20With%20Improved%20Training%20Strategies%20for%20Agro-Industrial%20Settings&rft.jtitle=IEEE%20access&rft.au=Vera,%20Oscar&rft.date=2024&rft.volume=12&rft.spage=194240&rft.epage=194255&rft.pages=194240-194255&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2024.3496728&rft_dat=%3Cproquest_doaj_%3E3149094517%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149094517&rft_id=info:pmid/&rft_ieee_id=10750816&rft_doaj_id=oai_doaj_org_article_76cd1569b7194d39bad57425e11b3d33&rfr_iscdi=true