Guaranteed-performance consensus for multi-agent systems with Lipschitz nonlinearity

This paper mainly addresses the guaranteed-performance consensus problem of multi-agent systems (MASs), under the energy constraints and Lipschitz nonlinear dynamics. First, to reach consensus under energy constraints, the consensus protocol and the quadratic performance function are proposed. After...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2024-12, Vol.46 (16), p.3146-3152
Hauptverfasser: Yan, Ke-Xing, Han, Tao, Xiao, Bo, Zhan, Xi-Sheng, Yan, Huaicheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3152
container_issue 16
container_start_page 3146
container_title Transactions of the Institute of Measurement and Control
container_volume 46
creator Yan, Ke-Xing
Han, Tao
Xiao, Bo
Zhan, Xi-Sheng
Yan, Huaicheng
description This paper mainly addresses the guaranteed-performance consensus problem of multi-agent systems (MASs), under the energy constraints and Lipschitz nonlinear dynamics. First, to reach consensus under energy constraints, the consensus protocol and the quadratic performance function are proposed. Afterward, by using the properties of nonsingular transformation matrix and Lipschitz’s nonlinear representation, the consensus function conditions are expressed. Moreover, considering the guaranteed-performance cost, this paper designs the quadratic performance function derived from the Riccati inequality and Lyapunov–Krasovskii theorem. Eventually, numerical simulations are implemented to validate the theoretical results.
doi_str_mv 10.1177/01423312241239376
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3149077527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_01423312241239376</sage_id><sourcerecordid>3149077527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-64ea6966dd8b362a437e829809c37ab3c77405f469b6b7081a803a43b78885b73</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAc2r-NZM9StEqFLzU85JNszalm12TLLJ-enep4EE8Dcz83hveQ-iW0QVjAPeUSS4E41wyLgoB6gzNmAQgVKjiHM2mO5mAS3SV0oFSKqWSM7Rd9yaakJ3bkc7Fuo2NCdZh24bkQuoTHle46Y_ZE_PuQsZpSNk1CX_6vMcb3yW79_kLhzYcfXAm-jxco4vaHJO7-Zlz9Pb0uF09k83r-mX1sCGWK5mJks6oQqndTldCcSMFOM0LTQsrwFTCAki6rKUqKlUB1cxoKkaqAq31sgIxR3cn3y62H71LuTy0fQzjy1IwWVCAJZ8odqJsbFOKri676BsTh5LRciqv_FPeqFmcNGkM_ev6v-AbgchutQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149077527</pqid></control><display><type>article</type><title>Guaranteed-performance consensus for multi-agent systems with Lipschitz nonlinearity</title><source>SAGE Complete A-Z List</source><creator>Yan, Ke-Xing ; Han, Tao ; Xiao, Bo ; Zhan, Xi-Sheng ; Yan, Huaicheng</creator><creatorcontrib>Yan, Ke-Xing ; Han, Tao ; Xiao, Bo ; Zhan, Xi-Sheng ; Yan, Huaicheng</creatorcontrib><description>This paper mainly addresses the guaranteed-performance consensus problem of multi-agent systems (MASs), under the energy constraints and Lipschitz nonlinear dynamics. First, to reach consensus under energy constraints, the consensus protocol and the quadratic performance function are proposed. Afterward, by using the properties of nonsingular transformation matrix and Lipschitz’s nonlinear representation, the consensus function conditions are expressed. Moreover, considering the guaranteed-performance cost, this paper designs the quadratic performance function derived from the Riccati inequality and Lyapunov–Krasovskii theorem. Eventually, numerical simulations are implemented to validate the theoretical results.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/01423312241239376</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Constraints ; Dynamical systems ; Multiagent systems ; Nonlinear dynamics ; Nonlinearity</subject><ispartof>Transactions of the Institute of Measurement and Control, 2024-12, Vol.46 (16), p.3146-3152</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-64ea6966dd8b362a437e829809c37ab3c77405f469b6b7081a803a43b78885b73</cites><orcidid>0000-0002-0199-0574 ; 0000-0001-5496-1809 ; 0000-0001-6643-7369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/01423312241239376$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/01423312241239376$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Yan, Ke-Xing</creatorcontrib><creatorcontrib>Han, Tao</creatorcontrib><creatorcontrib>Xiao, Bo</creatorcontrib><creatorcontrib>Zhan, Xi-Sheng</creatorcontrib><creatorcontrib>Yan, Huaicheng</creatorcontrib><title>Guaranteed-performance consensus for multi-agent systems with Lipschitz nonlinearity</title><title>Transactions of the Institute of Measurement and Control</title><description>This paper mainly addresses the guaranteed-performance consensus problem of multi-agent systems (MASs), under the energy constraints and Lipschitz nonlinear dynamics. First, to reach consensus under energy constraints, the consensus protocol and the quadratic performance function are proposed. Afterward, by using the properties of nonsingular transformation matrix and Lipschitz’s nonlinear representation, the consensus function conditions are expressed. Moreover, considering the guaranteed-performance cost, this paper designs the quadratic performance function derived from the Riccati inequality and Lyapunov–Krasovskii theorem. Eventually, numerical simulations are implemented to validate the theoretical results.</description><subject>Constraints</subject><subject>Dynamical systems</subject><subject>Multiagent systems</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvAc2r-NZM9StEqFLzU85JNszalm12TLLJ-enep4EE8Dcz83hveQ-iW0QVjAPeUSS4E41wyLgoB6gzNmAQgVKjiHM2mO5mAS3SV0oFSKqWSM7Rd9yaakJ3bkc7Fuo2NCdZh24bkQuoTHle46Y_ZE_PuQsZpSNk1CX_6vMcb3yW79_kLhzYcfXAm-jxco4vaHJO7-Zlz9Pb0uF09k83r-mX1sCGWK5mJks6oQqndTldCcSMFOM0LTQsrwFTCAki6rKUqKlUB1cxoKkaqAq31sgIxR3cn3y62H71LuTy0fQzjy1IwWVCAJZ8odqJsbFOKri676BsTh5LRciqv_FPeqFmcNGkM_ev6v-AbgchutQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Yan, Ke-Xing</creator><creator>Han, Tao</creator><creator>Xiao, Bo</creator><creator>Zhan, Xi-Sheng</creator><creator>Yan, Huaicheng</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0199-0574</orcidid><orcidid>https://orcid.org/0000-0001-5496-1809</orcidid><orcidid>https://orcid.org/0000-0001-6643-7369</orcidid></search><sort><creationdate>20241201</creationdate><title>Guaranteed-performance consensus for multi-agent systems with Lipschitz nonlinearity</title><author>Yan, Ke-Xing ; Han, Tao ; Xiao, Bo ; Zhan, Xi-Sheng ; Yan, Huaicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-64ea6966dd8b362a437e829809c37ab3c77405f469b6b7081a803a43b78885b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Constraints</topic><topic>Dynamical systems</topic><topic>Multiagent systems</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Ke-Xing</creatorcontrib><creatorcontrib>Han, Tao</creatorcontrib><creatorcontrib>Xiao, Bo</creatorcontrib><creatorcontrib>Zhan, Xi-Sheng</creatorcontrib><creatorcontrib>Yan, Huaicheng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Ke-Xing</au><au>Han, Tao</au><au>Xiao, Bo</au><au>Zhan, Xi-Sheng</au><au>Yan, Huaicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guaranteed-performance consensus for multi-agent systems with Lipschitz nonlinearity</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>46</volume><issue>16</issue><spage>3146</spage><epage>3152</epage><pages>3146-3152</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>This paper mainly addresses the guaranteed-performance consensus problem of multi-agent systems (MASs), under the energy constraints and Lipschitz nonlinear dynamics. First, to reach consensus under energy constraints, the consensus protocol and the quadratic performance function are proposed. Afterward, by using the properties of nonsingular transformation matrix and Lipschitz’s nonlinear representation, the consensus function conditions are expressed. Moreover, considering the guaranteed-performance cost, this paper designs the quadratic performance function derived from the Riccati inequality and Lyapunov–Krasovskii theorem. Eventually, numerical simulations are implemented to validate the theoretical results.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/01423312241239376</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0199-0574</orcidid><orcidid>https://orcid.org/0000-0001-5496-1809</orcidid><orcidid>https://orcid.org/0000-0001-6643-7369</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-3312
ispartof Transactions of the Institute of Measurement and Control, 2024-12, Vol.46 (16), p.3146-3152
issn 0142-3312
1477-0369
language eng
recordid cdi_proquest_journals_3149077527
source SAGE Complete A-Z List
subjects Constraints
Dynamical systems
Multiagent systems
Nonlinear dynamics
Nonlinearity
title Guaranteed-performance consensus for multi-agent systems with Lipschitz nonlinearity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guaranteed-performance%20consensus%20for%20multi-agent%20systems%20with%20Lipschitz%20nonlinearity&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Yan,%20Ke-Xing&rft.date=2024-12-01&rft.volume=46&rft.issue=16&rft.spage=3146&rft.epage=3152&rft.pages=3146-3152&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/01423312241239376&rft_dat=%3Cproquest_cross%3E3149077527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149077527&rft_id=info:pmid/&rft_sage_id=10.1177_01423312241239376&rfr_iscdi=true