Guaranteed-performance consensus for multi-agent systems with Lipschitz nonlinearity
This paper mainly addresses the guaranteed-performance consensus problem of multi-agent systems (MASs), under the energy constraints and Lipschitz nonlinear dynamics. First, to reach consensus under energy constraints, the consensus protocol and the quadratic performance function are proposed. After...
Gespeichert in:
Veröffentlicht in: | Transactions of the Institute of Measurement and Control 2024-12, Vol.46 (16), p.3146-3152 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3152 |
---|---|
container_issue | 16 |
container_start_page | 3146 |
container_title | Transactions of the Institute of Measurement and Control |
container_volume | 46 |
creator | Yan, Ke-Xing Han, Tao Xiao, Bo Zhan, Xi-Sheng Yan, Huaicheng |
description | This paper mainly addresses the guaranteed-performance consensus problem of multi-agent systems (MASs), under the energy constraints and Lipschitz nonlinear dynamics. First, to reach consensus under energy constraints, the consensus protocol and the quadratic performance function are proposed. Afterward, by using the properties of nonsingular transformation matrix and Lipschitz’s nonlinear representation, the consensus function conditions are expressed. Moreover, considering the guaranteed-performance cost, this paper designs the quadratic performance function derived from the Riccati inequality and Lyapunov–Krasovskii theorem. Eventually, numerical simulations are implemented to validate the theoretical results. |
doi_str_mv | 10.1177/01423312241239376 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3149077527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_01423312241239376</sage_id><sourcerecordid>3149077527</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-64ea6966dd8b362a437e829809c37ab3c77405f469b6b7081a803a43b78885b73</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAc2r-NZM9StEqFLzU85JNszalm12TLLJ-enep4EE8Dcz83hveQ-iW0QVjAPeUSS4E41wyLgoB6gzNmAQgVKjiHM2mO5mAS3SV0oFSKqWSM7Rd9yaakJ3bkc7Fuo2NCdZh24bkQuoTHle46Y_ZE_PuQsZpSNk1CX_6vMcb3yW79_kLhzYcfXAm-jxco4vaHJO7-Zlz9Pb0uF09k83r-mX1sCGWK5mJks6oQqndTldCcSMFOM0LTQsrwFTCAki6rKUqKlUB1cxoKkaqAq31sgIxR3cn3y62H71LuTy0fQzjy1IwWVCAJZ8odqJsbFOKri676BsTh5LRciqv_FPeqFmcNGkM_ev6v-AbgchutQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149077527</pqid></control><display><type>article</type><title>Guaranteed-performance consensus for multi-agent systems with Lipschitz nonlinearity</title><source>SAGE Complete A-Z List</source><creator>Yan, Ke-Xing ; Han, Tao ; Xiao, Bo ; Zhan, Xi-Sheng ; Yan, Huaicheng</creator><creatorcontrib>Yan, Ke-Xing ; Han, Tao ; Xiao, Bo ; Zhan, Xi-Sheng ; Yan, Huaicheng</creatorcontrib><description>This paper mainly addresses the guaranteed-performance consensus problem of multi-agent systems (MASs), under the energy constraints and Lipschitz nonlinear dynamics. First, to reach consensus under energy constraints, the consensus protocol and the quadratic performance function are proposed. Afterward, by using the properties of nonsingular transformation matrix and Lipschitz’s nonlinear representation, the consensus function conditions are expressed. Moreover, considering the guaranteed-performance cost, this paper designs the quadratic performance function derived from the Riccati inequality and Lyapunov–Krasovskii theorem. Eventually, numerical simulations are implemented to validate the theoretical results.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/01423312241239376</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Constraints ; Dynamical systems ; Multiagent systems ; Nonlinear dynamics ; Nonlinearity</subject><ispartof>Transactions of the Institute of Measurement and Control, 2024-12, Vol.46 (16), p.3146-3152</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-64ea6966dd8b362a437e829809c37ab3c77405f469b6b7081a803a43b78885b73</cites><orcidid>0000-0002-0199-0574 ; 0000-0001-5496-1809 ; 0000-0001-6643-7369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/01423312241239376$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/01423312241239376$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Yan, Ke-Xing</creatorcontrib><creatorcontrib>Han, Tao</creatorcontrib><creatorcontrib>Xiao, Bo</creatorcontrib><creatorcontrib>Zhan, Xi-Sheng</creatorcontrib><creatorcontrib>Yan, Huaicheng</creatorcontrib><title>Guaranteed-performance consensus for multi-agent systems with Lipschitz nonlinearity</title><title>Transactions of the Institute of Measurement and Control</title><description>This paper mainly addresses the guaranteed-performance consensus problem of multi-agent systems (MASs), under the energy constraints and Lipschitz nonlinear dynamics. First, to reach consensus under energy constraints, the consensus protocol and the quadratic performance function are proposed. Afterward, by using the properties of nonsingular transformation matrix and Lipschitz’s nonlinear representation, the consensus function conditions are expressed. Moreover, considering the guaranteed-performance cost, this paper designs the quadratic performance function derived from the Riccati inequality and Lyapunov–Krasovskii theorem. Eventually, numerical simulations are implemented to validate the theoretical results.</description><subject>Constraints</subject><subject>Dynamical systems</subject><subject>Multiagent systems</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvAc2r-NZM9StEqFLzU85JNszalm12TLLJ-enep4EE8Dcz83hveQ-iW0QVjAPeUSS4E41wyLgoB6gzNmAQgVKjiHM2mO5mAS3SV0oFSKqWSM7Rd9yaakJ3bkc7Fuo2NCdZh24bkQuoTHle46Y_ZE_PuQsZpSNk1CX_6vMcb3yW79_kLhzYcfXAm-jxco4vaHJO7-Zlz9Pb0uF09k83r-mX1sCGWK5mJks6oQqndTldCcSMFOM0LTQsrwFTCAki6rKUqKlUB1cxoKkaqAq31sgIxR3cn3y62H71LuTy0fQzjy1IwWVCAJZ8odqJsbFOKri676BsTh5LRciqv_FPeqFmcNGkM_ev6v-AbgchutQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Yan, Ke-Xing</creator><creator>Han, Tao</creator><creator>Xiao, Bo</creator><creator>Zhan, Xi-Sheng</creator><creator>Yan, Huaicheng</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0199-0574</orcidid><orcidid>https://orcid.org/0000-0001-5496-1809</orcidid><orcidid>https://orcid.org/0000-0001-6643-7369</orcidid></search><sort><creationdate>20241201</creationdate><title>Guaranteed-performance consensus for multi-agent systems with Lipschitz nonlinearity</title><author>Yan, Ke-Xing ; Han, Tao ; Xiao, Bo ; Zhan, Xi-Sheng ; Yan, Huaicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-64ea6966dd8b362a437e829809c37ab3c77405f469b6b7081a803a43b78885b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Constraints</topic><topic>Dynamical systems</topic><topic>Multiagent systems</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Ke-Xing</creatorcontrib><creatorcontrib>Han, Tao</creatorcontrib><creatorcontrib>Xiao, Bo</creatorcontrib><creatorcontrib>Zhan, Xi-Sheng</creatorcontrib><creatorcontrib>Yan, Huaicheng</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Ke-Xing</au><au>Han, Tao</au><au>Xiao, Bo</au><au>Zhan, Xi-Sheng</au><au>Yan, Huaicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guaranteed-performance consensus for multi-agent systems with Lipschitz nonlinearity</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>46</volume><issue>16</issue><spage>3146</spage><epage>3152</epage><pages>3146-3152</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>This paper mainly addresses the guaranteed-performance consensus problem of multi-agent systems (MASs), under the energy constraints and Lipschitz nonlinear dynamics. First, to reach consensus under energy constraints, the consensus protocol and the quadratic performance function are proposed. Afterward, by using the properties of nonsingular transformation matrix and Lipschitz’s nonlinear representation, the consensus function conditions are expressed. Moreover, considering the guaranteed-performance cost, this paper designs the quadratic performance function derived from the Riccati inequality and Lyapunov–Krasovskii theorem. Eventually, numerical simulations are implemented to validate the theoretical results.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/01423312241239376</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0199-0574</orcidid><orcidid>https://orcid.org/0000-0001-5496-1809</orcidid><orcidid>https://orcid.org/0000-0001-6643-7369</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-3312 |
ispartof | Transactions of the Institute of Measurement and Control, 2024-12, Vol.46 (16), p.3146-3152 |
issn | 0142-3312 1477-0369 |
language | eng |
recordid | cdi_proquest_journals_3149077527 |
source | SAGE Complete A-Z List |
subjects | Constraints Dynamical systems Multiagent systems Nonlinear dynamics Nonlinearity |
title | Guaranteed-performance consensus for multi-agent systems with Lipschitz nonlinearity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A03%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guaranteed-performance%20consensus%20for%20multi-agent%20systems%20with%20Lipschitz%20nonlinearity&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Yan,%20Ke-Xing&rft.date=2024-12-01&rft.volume=46&rft.issue=16&rft.spage=3146&rft.epage=3152&rft.pages=3146-3152&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/01423312241239376&rft_dat=%3Cproquest_cross%3E3149077527%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149077527&rft_id=info:pmid/&rft_sage_id=10.1177_01423312241239376&rfr_iscdi=true |