Optimization method of C2 system architecture based on ALCARO
To address the lack of combat mission-driven and guided optimization methods in existing command and control (C2) system architectures, this paper proposes an optimization method for C2 system architecture based on an improved artificial rabbit optimization (ARO) algorithm, specifically the adaptive...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2025, Vol.81 (1), Article 330 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | The Journal of supercomputing |
container_volume | 81 |
creator | Wang, Jian-wei Zhang, Qing Pan, Cheng-sheng |
description | To address the lack of combat mission-driven and guided optimization methods in existing command and control (C2) system architectures, this paper proposes an optimization method for C2 system architecture based on an improved artificial rabbit optimization (ARO) algorithm, specifically the adaptive inertia weight, Levy flight, and chaotic opposite-based learning in artificial rabbit optimization (ALCARO). This method introduces a collaborative connection degree for C2 system architectures, quantitatively describing the degree of collaboration between combat units and same-level C2 units, and establishes a mathematical model for the optimization problem of C2 system architecture. The ALCARO algorithm innovatively incorporates adaptive inertia weight, Levy flight, and piecewise chaotic mapping-based opposite learning strategies to enhance the algorithm's convergence speed, effectively avoiding premature convergence to local optima and demonstrating robust performance. Simulation results show that this method can effectively enhance the connectivity among collaborative combat units in a mission-oriented manner and possesses excellent invulnerability. |
doi_str_mv | 10.1007/s11227-024-06768-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3149062164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149062164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-7be92a8d93784e6f74491d7c64c7fe8a4b6c1f66d179ccf8d3f8c8b4eacd6ff33</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbR5N04WIovqAwILoOaZo4HWw7JpnF-OutVnDn6i7O-c6FD6FLCtcUQN0kShlTBJggIJXUpDhCC1ooTkBocYwWUDIguhDsFJ2ltAUAwRVfoNv1Lnd992lzNw6493kztngMuGI4HVL2PbbRbbrsXd5Hjxub_JQPeFVXq-f1OToJ9j35i9-7RK_3dy_VI6nXD0_VqiaOAWSiGl8yq9uSKy28DEqIkrbKSeFU8NqKRjoapGypKp0LuuVBO90Ib10rQ-B8ia7m3V0cP_Y-ZbMd93GYXhpORQmSUSmmFptbLo4pRR_MLna9jQdDwXxrMrMmM2kyP5pMMUF8htJUHt58_Jv-h_oCCh1qBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149062164</pqid></control><display><type>article</type><title>Optimization method of C2 system architecture based on ALCARO</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Jian-wei ; Zhang, Qing ; Pan, Cheng-sheng</creator><creatorcontrib>Wang, Jian-wei ; Zhang, Qing ; Pan, Cheng-sheng</creatorcontrib><description>To address the lack of combat mission-driven and guided optimization methods in existing command and control (C2) system architectures, this paper proposes an optimization method for C2 system architecture based on an improved artificial rabbit optimization (ARO) algorithm, specifically the adaptive inertia weight, Levy flight, and chaotic opposite-based learning in artificial rabbit optimization (ALCARO). This method introduces a collaborative connection degree for C2 system architectures, quantitatively describing the degree of collaboration between combat units and same-level C2 units, and establishes a mathematical model for the optimization problem of C2 system architecture. The ALCARO algorithm innovatively incorporates adaptive inertia weight, Levy flight, and piecewise chaotic mapping-based opposite learning strategies to enhance the algorithm's convergence speed, effectively avoiding premature convergence to local optima and demonstrating robust performance. Simulation results show that this method can effectively enhance the connectivity among collaborative combat units in a mission-oriented manner and possesses excellent invulnerability.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-024-06768-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive algorithms ; Adaptive systems ; Chaos theory ; Command and control ; Compilers ; Computer Science ; Convergence ; Inertia ; Interpreters ; Machine learning ; Optimization ; Processor Architectures ; Programming Languages ; Rabbits</subject><ispartof>The Journal of supercomputing, 2025, Vol.81 (1), Article 330</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-7be92a8d93784e6f74491d7c64c7fe8a4b6c1f66d179ccf8d3f8c8b4eacd6ff33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-024-06768-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-024-06768-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Jian-wei</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Pan, Cheng-sheng</creatorcontrib><title>Optimization method of C2 system architecture based on ALCARO</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>To address the lack of combat mission-driven and guided optimization methods in existing command and control (C2) system architectures, this paper proposes an optimization method for C2 system architecture based on an improved artificial rabbit optimization (ARO) algorithm, specifically the adaptive inertia weight, Levy flight, and chaotic opposite-based learning in artificial rabbit optimization (ALCARO). This method introduces a collaborative connection degree for C2 system architectures, quantitatively describing the degree of collaboration between combat units and same-level C2 units, and establishes a mathematical model for the optimization problem of C2 system architecture. The ALCARO algorithm innovatively incorporates adaptive inertia weight, Levy flight, and piecewise chaotic mapping-based opposite learning strategies to enhance the algorithm's convergence speed, effectively avoiding premature convergence to local optima and demonstrating robust performance. Simulation results show that this method can effectively enhance the connectivity among collaborative combat units in a mission-oriented manner and possesses excellent invulnerability.</description><subject>Adaptive algorithms</subject><subject>Adaptive systems</subject><subject>Chaos theory</subject><subject>Command and control</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Inertia</subject><subject>Interpreters</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Rabbits</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbR5N04WIovqAwILoOaZo4HWw7JpnF-OutVnDn6i7O-c6FD6FLCtcUQN0kShlTBJggIJXUpDhCC1ooTkBocYwWUDIguhDsFJ2ltAUAwRVfoNv1Lnd992lzNw6493kztngMuGI4HVL2PbbRbbrsXd5Hjxub_JQPeFVXq-f1OToJ9j35i9-7RK_3dy_VI6nXD0_VqiaOAWSiGl8yq9uSKy28DEqIkrbKSeFU8NqKRjoapGypKp0LuuVBO90Ib10rQ-B8ia7m3V0cP_Y-ZbMd93GYXhpORQmSUSmmFptbLo4pRR_MLna9jQdDwXxrMrMmM2kyP5pMMUF8htJUHt58_Jv-h_oCCh1qBQ</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Wang, Jian-wei</creator><creator>Zhang, Qing</creator><creator>Pan, Cheng-sheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2025</creationdate><title>Optimization method of C2 system architecture based on ALCARO</title><author>Wang, Jian-wei ; Zhang, Qing ; Pan, Cheng-sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-7be92a8d93784e6f74491d7c64c7fe8a4b6c1f66d179ccf8d3f8c8b4eacd6ff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive systems</topic><topic>Chaos theory</topic><topic>Command and control</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Inertia</topic><topic>Interpreters</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Rabbits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jian-wei</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Pan, Cheng-sheng</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jian-wei</au><au>Zhang, Qing</au><au>Pan, Cheng-sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization method of C2 system architecture based on ALCARO</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2025</date><risdate>2025</risdate><volume>81</volume><issue>1</issue><artnum>330</artnum><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>To address the lack of combat mission-driven and guided optimization methods in existing command and control (C2) system architectures, this paper proposes an optimization method for C2 system architecture based on an improved artificial rabbit optimization (ARO) algorithm, specifically the adaptive inertia weight, Levy flight, and chaotic opposite-based learning in artificial rabbit optimization (ALCARO). This method introduces a collaborative connection degree for C2 system architectures, quantitatively describing the degree of collaboration between combat units and same-level C2 units, and establishes a mathematical model for the optimization problem of C2 system architecture. The ALCARO algorithm innovatively incorporates adaptive inertia weight, Levy flight, and piecewise chaotic mapping-based opposite learning strategies to enhance the algorithm's convergence speed, effectively avoiding premature convergence to local optima and demonstrating robust performance. Simulation results show that this method can effectively enhance the connectivity among collaborative combat units in a mission-oriented manner and possesses excellent invulnerability.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-024-06768-5</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-8542 |
ispartof | The Journal of supercomputing, 2025, Vol.81 (1), Article 330 |
issn | 0920-8542 1573-0484 |
language | eng |
recordid | cdi_proquest_journals_3149062164 |
source | SpringerLink Journals - AutoHoldings |
subjects | Adaptive algorithms Adaptive systems Chaos theory Command and control Compilers Computer Science Convergence Inertia Interpreters Machine learning Optimization Processor Architectures Programming Languages Rabbits |
title | Optimization method of C2 system architecture based on ALCARO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20method%20of%20C2%20system%20architecture%20based%20on%20ALCARO&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Wang,%20Jian-wei&rft.date=2025&rft.volume=81&rft.issue=1&rft.artnum=330&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-024-06768-5&rft_dat=%3Cproquest_cross%3E3149062164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149062164&rft_id=info:pmid/&rfr_iscdi=true |