Optimization method of C2 system architecture based on ALCARO

To address the lack of combat mission-driven and guided optimization methods in existing command and control (C2) system architectures, this paper proposes an optimization method for C2 system architecture based on an improved artificial rabbit optimization (ARO) algorithm, specifically the adaptive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2025, Vol.81 (1), Article 330
Hauptverfasser: Wang, Jian-wei, Zhang, Qing, Pan, Cheng-sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The Journal of supercomputing
container_volume 81
creator Wang, Jian-wei
Zhang, Qing
Pan, Cheng-sheng
description To address the lack of combat mission-driven and guided optimization methods in existing command and control (C2) system architectures, this paper proposes an optimization method for C2 system architecture based on an improved artificial rabbit optimization (ARO) algorithm, specifically the adaptive inertia weight, Levy flight, and chaotic opposite-based learning in artificial rabbit optimization (ALCARO). This method introduces a collaborative connection degree for C2 system architectures, quantitatively describing the degree of collaboration between combat units and same-level C2 units, and establishes a mathematical model for the optimization problem of C2 system architecture. The ALCARO algorithm innovatively incorporates adaptive inertia weight, Levy flight, and piecewise chaotic mapping-based opposite learning strategies to enhance the algorithm's convergence speed, effectively avoiding premature convergence to local optima and demonstrating robust performance. Simulation results show that this method can effectively enhance the connectivity among collaborative combat units in a mission-oriented manner and possesses excellent invulnerability.
doi_str_mv 10.1007/s11227-024-06768-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3149062164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3149062164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-7be92a8d93784e6f74491d7c64c7fe8a4b6c1f66d179ccf8d3f8c8b4eacd6ff33</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbR5N04WIovqAwILoOaZo4HWw7JpnF-OutVnDn6i7O-c6FD6FLCtcUQN0kShlTBJggIJXUpDhCC1ooTkBocYwWUDIguhDsFJ2ltAUAwRVfoNv1Lnd992lzNw6493kztngMuGI4HVL2PbbRbbrsXd5Hjxub_JQPeFVXq-f1OToJ9j35i9-7RK_3dy_VI6nXD0_VqiaOAWSiGl8yq9uSKy28DEqIkrbKSeFU8NqKRjoapGypKp0LuuVBO90Ib10rQ-B8ia7m3V0cP_Y-ZbMd93GYXhpORQmSUSmmFptbLo4pRR_MLna9jQdDwXxrMrMmM2kyP5pMMUF8htJUHt58_Jv-h_oCCh1qBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3149062164</pqid></control><display><type>article</type><title>Optimization method of C2 system architecture based on ALCARO</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Jian-wei ; Zhang, Qing ; Pan, Cheng-sheng</creator><creatorcontrib>Wang, Jian-wei ; Zhang, Qing ; Pan, Cheng-sheng</creatorcontrib><description>To address the lack of combat mission-driven and guided optimization methods in existing command and control (C2) system architectures, this paper proposes an optimization method for C2 system architecture based on an improved artificial rabbit optimization (ARO) algorithm, specifically the adaptive inertia weight, Levy flight, and chaotic opposite-based learning in artificial rabbit optimization (ALCARO). This method introduces a collaborative connection degree for C2 system architectures, quantitatively describing the degree of collaboration between combat units and same-level C2 units, and establishes a mathematical model for the optimization problem of C2 system architecture. The ALCARO algorithm innovatively incorporates adaptive inertia weight, Levy flight, and piecewise chaotic mapping-based opposite learning strategies to enhance the algorithm's convergence speed, effectively avoiding premature convergence to local optima and demonstrating robust performance. Simulation results show that this method can effectively enhance the connectivity among collaborative combat units in a mission-oriented manner and possesses excellent invulnerability.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-024-06768-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Adaptive algorithms ; Adaptive systems ; Chaos theory ; Command and control ; Compilers ; Computer Science ; Convergence ; Inertia ; Interpreters ; Machine learning ; Optimization ; Processor Architectures ; Programming Languages ; Rabbits</subject><ispartof>The Journal of supercomputing, 2025, Vol.81 (1), Article 330</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-7be92a8d93784e6f74491d7c64c7fe8a4b6c1f66d179ccf8d3f8c8b4eacd6ff33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-024-06768-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-024-06768-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Jian-wei</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Pan, Cheng-sheng</creatorcontrib><title>Optimization method of C2 system architecture based on ALCARO</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>To address the lack of combat mission-driven and guided optimization methods in existing command and control (C2) system architectures, this paper proposes an optimization method for C2 system architecture based on an improved artificial rabbit optimization (ARO) algorithm, specifically the adaptive inertia weight, Levy flight, and chaotic opposite-based learning in artificial rabbit optimization (ALCARO). This method introduces a collaborative connection degree for C2 system architectures, quantitatively describing the degree of collaboration between combat units and same-level C2 units, and establishes a mathematical model for the optimization problem of C2 system architecture. The ALCARO algorithm innovatively incorporates adaptive inertia weight, Levy flight, and piecewise chaotic mapping-based opposite learning strategies to enhance the algorithm's convergence speed, effectively avoiding premature convergence to local optima and demonstrating robust performance. Simulation results show that this method can effectively enhance the connectivity among collaborative combat units in a mission-oriented manner and possesses excellent invulnerability.</description><subject>Adaptive algorithms</subject><subject>Adaptive systems</subject><subject>Chaos theory</subject><subject>Command and control</subject><subject>Compilers</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Inertia</subject><subject>Interpreters</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Rabbits</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AVcB19GbR5N04WIovqAwILoOaZo4HWw7JpnF-OutVnDn6i7O-c6FD6FLCtcUQN0kShlTBJggIJXUpDhCC1ooTkBocYwWUDIguhDsFJ2ltAUAwRVfoNv1Lnd992lzNw6493kztngMuGI4HVL2PbbRbbrsXd5Hjxub_JQPeFVXq-f1OToJ9j35i9-7RK_3dy_VI6nXD0_VqiaOAWSiGl8yq9uSKy28DEqIkrbKSeFU8NqKRjoapGypKp0LuuVBO90Ib10rQ-B8ia7m3V0cP_Y-ZbMd93GYXhpORQmSUSmmFptbLo4pRR_MLna9jQdDwXxrMrMmM2kyP5pMMUF8htJUHt58_Jv-h_oCCh1qBQ</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Wang, Jian-wei</creator><creator>Zhang, Qing</creator><creator>Pan, Cheng-sheng</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2025</creationdate><title>Optimization method of C2 system architecture based on ALCARO</title><author>Wang, Jian-wei ; Zhang, Qing ; Pan, Cheng-sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-7be92a8d93784e6f74491d7c64c7fe8a4b6c1f66d179ccf8d3f8c8b4eacd6ff33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive systems</topic><topic>Chaos theory</topic><topic>Command and control</topic><topic>Compilers</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Inertia</topic><topic>Interpreters</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Rabbits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jian-wei</creatorcontrib><creatorcontrib>Zhang, Qing</creatorcontrib><creatorcontrib>Pan, Cheng-sheng</creatorcontrib><collection>CrossRef</collection><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jian-wei</au><au>Zhang, Qing</au><au>Pan, Cheng-sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization method of C2 system architecture based on ALCARO</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2025</date><risdate>2025</risdate><volume>81</volume><issue>1</issue><artnum>330</artnum><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>To address the lack of combat mission-driven and guided optimization methods in existing command and control (C2) system architectures, this paper proposes an optimization method for C2 system architecture based on an improved artificial rabbit optimization (ARO) algorithm, specifically the adaptive inertia weight, Levy flight, and chaotic opposite-based learning in artificial rabbit optimization (ALCARO). This method introduces a collaborative connection degree for C2 system architectures, quantitatively describing the degree of collaboration between combat units and same-level C2 units, and establishes a mathematical model for the optimization problem of C2 system architecture. The ALCARO algorithm innovatively incorporates adaptive inertia weight, Levy flight, and piecewise chaotic mapping-based opposite learning strategies to enhance the algorithm's convergence speed, effectively avoiding premature convergence to local optima and demonstrating robust performance. Simulation results show that this method can effectively enhance the connectivity among collaborative combat units in a mission-oriented manner and possesses excellent invulnerability.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-024-06768-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2025, Vol.81 (1), Article 330
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_3149062164
source SpringerLink Journals - AutoHoldings
subjects Adaptive algorithms
Adaptive systems
Chaos theory
Command and control
Compilers
Computer Science
Convergence
Inertia
Interpreters
Machine learning
Optimization
Processor Architectures
Programming Languages
Rabbits
title Optimization method of C2 system architecture based on ALCARO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20method%20of%20C2%20system%20architecture%20based%20on%20ALCARO&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Wang,%20Jian-wei&rft.date=2025&rft.volume=81&rft.issue=1&rft.artnum=330&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-024-06768-5&rft_dat=%3Cproquest_cross%3E3149062164%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3149062164&rft_id=info:pmid/&rfr_iscdi=true