EasyTime: Time Series Forecasting Made Easy

Time series forecasting has important applications across diverse domains. EasyTime, the system we demonstrate, facilitates easy use of time-series forecasting methods by researchers and practitioners alike. First, EasyTime enables one-click evaluation, enabling researchers to evaluate new forecasti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Qiu, Xiangfei, Li, Xiuwen, Pang, Ruiyang, Pan, Zhicheng, Wu, Xingjian, Liu, Yang, Hu, Jilin, Yang, Shu, Lu, Xuesong, Yang, Chengcheng, Guo, Chenjuan, Zhou, Aoying, Jensen, Christian S, Yang, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Qiu, Xiangfei
Li, Xiuwen
Pang, Ruiyang
Pan, Zhicheng
Wu, Xingjian
Liu, Yang
Hu, Jilin
Yang, Shu
Lu, Xuesong
Yang, Chengcheng
Guo, Chenjuan
Zhou, Aoying
Jensen, Christian S
Yang, Bin
description Time series forecasting has important applications across diverse domains. EasyTime, the system we demonstrate, facilitates easy use of time-series forecasting methods by researchers and practitioners alike. First, EasyTime enables one-click evaluation, enabling researchers to evaluate new forecasting methods using the suite of diverse time series datasets collected in the preexisting time series forecasting benchmark (TFB). This is achieved by leveraging TFB's flexible and consistent evaluation pipeline. Second, when practitioners must perform forecasting on a new dataset, a nontrivial first step is often to find an appropriate forecasting method. EasyTime provides an Automated Ensemble module that combines the promising forecasting methods to yield superior forecasting accuracy compared to individual methods. Third, EasyTime offers a natural language Q&A module leveraging large language models. Given a question like "Which method is best for long term forecasting on time series with strong seasonality?", EasyTime converts the question into SQL queries on the database of results obtained by TFB and then returns an answer in natural language and charts. By demonstrating EasyTime, we intend to show how it is possible to simplify the use of time series forecasting and to offer better support for the development of new generations of time series forecasting methods.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3148980421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148980421</sourcerecordid><originalsourceid>FETCH-proquest_journals_31489804213</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdk0srgzJzE21UgCRCsGpRZmpxQpu-UWpyYnFJZl56Qq-iSmpCiBlPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2xoYmFpYWBiZGhMnCoA9Ugwcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148980421</pqid></control><display><type>article</type><title>EasyTime: Time Series Forecasting Made Easy</title><source>Free E- Journals</source><creator>Qiu, Xiangfei ; Li, Xiuwen ; Pang, Ruiyang ; Pan, Zhicheng ; Wu, Xingjian ; Liu, Yang ; Hu, Jilin ; Yang, Shu ; Lu, Xuesong ; Yang, Chengcheng ; Guo, Chenjuan ; Zhou, Aoying ; Jensen, Christian S ; Yang, Bin</creator><creatorcontrib>Qiu, Xiangfei ; Li, Xiuwen ; Pang, Ruiyang ; Pan, Zhicheng ; Wu, Xingjian ; Liu, Yang ; Hu, Jilin ; Yang, Shu ; Lu, Xuesong ; Yang, Chengcheng ; Guo, Chenjuan ; Zhou, Aoying ; Jensen, Christian S ; Yang, Bin</creatorcontrib><description>Time series forecasting has important applications across diverse domains. EasyTime, the system we demonstrate, facilitates easy use of time-series forecasting methods by researchers and practitioners alike. First, EasyTime enables one-click evaluation, enabling researchers to evaluate new forecasting methods using the suite of diverse time series datasets collected in the preexisting time series forecasting benchmark (TFB). This is achieved by leveraging TFB's flexible and consistent evaluation pipeline. Second, when practitioners must perform forecasting on a new dataset, a nontrivial first step is often to find an appropriate forecasting method. EasyTime provides an Automated Ensemble module that combines the promising forecasting methods to yield superior forecasting accuracy compared to individual methods. Third, EasyTime offers a natural language Q&amp;A module leveraging large language models. Given a question like "Which method is best for long term forecasting on time series with strong seasonality?", EasyTime converts the question into SQL queries on the database of results obtained by TFB and then returns an answer in natural language and charts. By demonstrating EasyTime, we intend to show how it is possible to simplify the use of time series forecasting and to offer better support for the development of new generations of time series forecasting methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Forecasting ; Large language models ; Modules ; Natural language ; Time series</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Qiu, Xiangfei</creatorcontrib><creatorcontrib>Li, Xiuwen</creatorcontrib><creatorcontrib>Pang, Ruiyang</creatorcontrib><creatorcontrib>Pan, Zhicheng</creatorcontrib><creatorcontrib>Wu, Xingjian</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Hu, Jilin</creatorcontrib><creatorcontrib>Yang, Shu</creatorcontrib><creatorcontrib>Lu, Xuesong</creatorcontrib><creatorcontrib>Yang, Chengcheng</creatorcontrib><creatorcontrib>Guo, Chenjuan</creatorcontrib><creatorcontrib>Zhou, Aoying</creatorcontrib><creatorcontrib>Jensen, Christian S</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><title>EasyTime: Time Series Forecasting Made Easy</title><title>arXiv.org</title><description>Time series forecasting has important applications across diverse domains. EasyTime, the system we demonstrate, facilitates easy use of time-series forecasting methods by researchers and practitioners alike. First, EasyTime enables one-click evaluation, enabling researchers to evaluate new forecasting methods using the suite of diverse time series datasets collected in the preexisting time series forecasting benchmark (TFB). This is achieved by leveraging TFB's flexible and consistent evaluation pipeline. Second, when practitioners must perform forecasting on a new dataset, a nontrivial first step is often to find an appropriate forecasting method. EasyTime provides an Automated Ensemble module that combines the promising forecasting methods to yield superior forecasting accuracy compared to individual methods. Third, EasyTime offers a natural language Q&amp;A module leveraging large language models. Given a question like "Which method is best for long term forecasting on time series with strong seasonality?", EasyTime converts the question into SQL queries on the database of results obtained by TFB and then returns an answer in natural language and charts. By demonstrating EasyTime, we intend to show how it is possible to simplify the use of time series forecasting and to offer better support for the development of new generations of time series forecasting methods.</description><subject>Datasets</subject><subject>Forecasting</subject><subject>Large language models</subject><subject>Modules</subject><subject>Natural language</subject><subject>Time series</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdk0srgzJzE21UgCRCsGpRZmpxQpu-UWpyYnFJZl56Qq-iSmpCiBlPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2xoYmFpYWBiZGhMnCoA9Ugwcw</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Qiu, Xiangfei</creator><creator>Li, Xiuwen</creator><creator>Pang, Ruiyang</creator><creator>Pan, Zhicheng</creator><creator>Wu, Xingjian</creator><creator>Liu, Yang</creator><creator>Hu, Jilin</creator><creator>Yang, Shu</creator><creator>Lu, Xuesong</creator><creator>Yang, Chengcheng</creator><creator>Guo, Chenjuan</creator><creator>Zhou, Aoying</creator><creator>Jensen, Christian S</creator><creator>Yang, Bin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241223</creationdate><title>EasyTime: Time Series Forecasting Made Easy</title><author>Qiu, Xiangfei ; Li, Xiuwen ; Pang, Ruiyang ; Pan, Zhicheng ; Wu, Xingjian ; Liu, Yang ; Hu, Jilin ; Yang, Shu ; Lu, Xuesong ; Yang, Chengcheng ; Guo, Chenjuan ; Zhou, Aoying ; Jensen, Christian S ; Yang, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31489804213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Forecasting</topic><topic>Large language models</topic><topic>Modules</topic><topic>Natural language</topic><topic>Time series</topic><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Xiangfei</creatorcontrib><creatorcontrib>Li, Xiuwen</creatorcontrib><creatorcontrib>Pang, Ruiyang</creatorcontrib><creatorcontrib>Pan, Zhicheng</creatorcontrib><creatorcontrib>Wu, Xingjian</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Hu, Jilin</creatorcontrib><creatorcontrib>Yang, Shu</creatorcontrib><creatorcontrib>Lu, Xuesong</creatorcontrib><creatorcontrib>Yang, Chengcheng</creatorcontrib><creatorcontrib>Guo, Chenjuan</creatorcontrib><creatorcontrib>Zhou, Aoying</creatorcontrib><creatorcontrib>Jensen, Christian S</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Xiangfei</au><au>Li, Xiuwen</au><au>Pang, Ruiyang</au><au>Pan, Zhicheng</au><au>Wu, Xingjian</au><au>Liu, Yang</au><au>Hu, Jilin</au><au>Yang, Shu</au><au>Lu, Xuesong</au><au>Yang, Chengcheng</au><au>Guo, Chenjuan</au><au>Zhou, Aoying</au><au>Jensen, Christian S</au><au>Yang, Bin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>EasyTime: Time Series Forecasting Made Easy</atitle><jtitle>arXiv.org</jtitle><date>2024-12-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Time series forecasting has important applications across diverse domains. EasyTime, the system we demonstrate, facilitates easy use of time-series forecasting methods by researchers and practitioners alike. First, EasyTime enables one-click evaluation, enabling researchers to evaluate new forecasting methods using the suite of diverse time series datasets collected in the preexisting time series forecasting benchmark (TFB). This is achieved by leveraging TFB's flexible and consistent evaluation pipeline. Second, when practitioners must perform forecasting on a new dataset, a nontrivial first step is often to find an appropriate forecasting method. EasyTime provides an Automated Ensemble module that combines the promising forecasting methods to yield superior forecasting accuracy compared to individual methods. Third, EasyTime offers a natural language Q&amp;A module leveraging large language models. Given a question like "Which method is best for long term forecasting on time series with strong seasonality?", EasyTime converts the question into SQL queries on the database of results obtained by TFB and then returns an answer in natural language and charts. By demonstrating EasyTime, we intend to show how it is possible to simplify the use of time series forecasting and to offer better support for the development of new generations of time series forecasting methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3148980421
source Free E- Journals
subjects Datasets
Forecasting
Large language models
Modules
Natural language
Time series
title EasyTime: Time Series Forecasting Made Easy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=EasyTime:%20Time%20Series%20Forecasting%20Made%20Easy&rft.jtitle=arXiv.org&rft.au=Qiu,%20Xiangfei&rft.date=2024-12-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3148980421%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148980421&rft_id=info:pmid/&rfr_iscdi=true