EasyTime: Time Series Forecasting Made Easy
Time series forecasting has important applications across diverse domains. EasyTime, the system we demonstrate, facilitates easy use of time-series forecasting methods by researchers and practitioners alike. First, EasyTime enables one-click evaluation, enabling researchers to evaluate new forecasti...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Qiu, Xiangfei Li, Xiuwen Pang, Ruiyang Pan, Zhicheng Wu, Xingjian Liu, Yang Hu, Jilin Yang, Shu Lu, Xuesong Yang, Chengcheng Guo, Chenjuan Zhou, Aoying Jensen, Christian S Yang, Bin |
description | Time series forecasting has important applications across diverse domains. EasyTime, the system we demonstrate, facilitates easy use of time-series forecasting methods by researchers and practitioners alike. First, EasyTime enables one-click evaluation, enabling researchers to evaluate new forecasting methods using the suite of diverse time series datasets collected in the preexisting time series forecasting benchmark (TFB). This is achieved by leveraging TFB's flexible and consistent evaluation pipeline. Second, when practitioners must perform forecasting on a new dataset, a nontrivial first step is often to find an appropriate forecasting method. EasyTime provides an Automated Ensemble module that combines the promising forecasting methods to yield superior forecasting accuracy compared to individual methods. Third, EasyTime offers a natural language Q&A module leveraging large language models. Given a question like "Which method is best for long term forecasting on time series with strong seasonality?", EasyTime converts the question into SQL queries on the database of results obtained by TFB and then returns an answer in natural language and charts. By demonstrating EasyTime, we intend to show how it is possible to simplify the use of time series forecasting and to offer better support for the development of new generations of time series forecasting methods. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3148980421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148980421</sourcerecordid><originalsourceid>FETCH-proquest_journals_31489804213</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdk0srgzJzE21UgCRCsGpRZmpxQpu-UWpyYnFJZl56Qq-iSmpCiBlPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2xoYmFpYWBiZGhMnCoA9Ugwcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148980421</pqid></control><display><type>article</type><title>EasyTime: Time Series Forecasting Made Easy</title><source>Free E- Journals</source><creator>Qiu, Xiangfei ; Li, Xiuwen ; Pang, Ruiyang ; Pan, Zhicheng ; Wu, Xingjian ; Liu, Yang ; Hu, Jilin ; Yang, Shu ; Lu, Xuesong ; Yang, Chengcheng ; Guo, Chenjuan ; Zhou, Aoying ; Jensen, Christian S ; Yang, Bin</creator><creatorcontrib>Qiu, Xiangfei ; Li, Xiuwen ; Pang, Ruiyang ; Pan, Zhicheng ; Wu, Xingjian ; Liu, Yang ; Hu, Jilin ; Yang, Shu ; Lu, Xuesong ; Yang, Chengcheng ; Guo, Chenjuan ; Zhou, Aoying ; Jensen, Christian S ; Yang, Bin</creatorcontrib><description>Time series forecasting has important applications across diverse domains. EasyTime, the system we demonstrate, facilitates easy use of time-series forecasting methods by researchers and practitioners alike. First, EasyTime enables one-click evaluation, enabling researchers to evaluate new forecasting methods using the suite of diverse time series datasets collected in the preexisting time series forecasting benchmark (TFB). This is achieved by leveraging TFB's flexible and consistent evaluation pipeline. Second, when practitioners must perform forecasting on a new dataset, a nontrivial first step is often to find an appropriate forecasting method. EasyTime provides an Automated Ensemble module that combines the promising forecasting methods to yield superior forecasting accuracy compared to individual methods. Third, EasyTime offers a natural language Q&A module leveraging large language models. Given a question like "Which method is best for long term forecasting on time series with strong seasonality?", EasyTime converts the question into SQL queries on the database of results obtained by TFB and then returns an answer in natural language and charts. By demonstrating EasyTime, we intend to show how it is possible to simplify the use of time series forecasting and to offer better support for the development of new generations of time series forecasting methods.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Datasets ; Forecasting ; Large language models ; Modules ; Natural language ; Time series</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Qiu, Xiangfei</creatorcontrib><creatorcontrib>Li, Xiuwen</creatorcontrib><creatorcontrib>Pang, Ruiyang</creatorcontrib><creatorcontrib>Pan, Zhicheng</creatorcontrib><creatorcontrib>Wu, Xingjian</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Hu, Jilin</creatorcontrib><creatorcontrib>Yang, Shu</creatorcontrib><creatorcontrib>Lu, Xuesong</creatorcontrib><creatorcontrib>Yang, Chengcheng</creatorcontrib><creatorcontrib>Guo, Chenjuan</creatorcontrib><creatorcontrib>Zhou, Aoying</creatorcontrib><creatorcontrib>Jensen, Christian S</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><title>EasyTime: Time Series Forecasting Made Easy</title><title>arXiv.org</title><description>Time series forecasting has important applications across diverse domains. EasyTime, the system we demonstrate, facilitates easy use of time-series forecasting methods by researchers and practitioners alike. First, EasyTime enables one-click evaluation, enabling researchers to evaluate new forecasting methods using the suite of diverse time series datasets collected in the preexisting time series forecasting benchmark (TFB). This is achieved by leveraging TFB's flexible and consistent evaluation pipeline. Second, when practitioners must perform forecasting on a new dataset, a nontrivial first step is often to find an appropriate forecasting method. EasyTime provides an Automated Ensemble module that combines the promising forecasting methods to yield superior forecasting accuracy compared to individual methods. Third, EasyTime offers a natural language Q&A module leveraging large language models. Given a question like "Which method is best for long term forecasting on time series with strong seasonality?", EasyTime converts the question into SQL queries on the database of results obtained by TFB and then returns an answer in natural language and charts. By demonstrating EasyTime, we intend to show how it is possible to simplify the use of time series forecasting and to offer better support for the development of new generations of time series forecasting methods.</description><subject>Datasets</subject><subject>Forecasting</subject><subject>Large language models</subject><subject>Modules</subject><subject>Natural language</subject><subject>Time series</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQdk0srgzJzE21UgCRCsGpRZmpxQpu-UWpyYnFJZl56Qq-iSmpCiBlPAysaYk5xam8UJqbQdnNNcTZQ7egKL-wNLW4JD4rv7QoDygVb2xoYmFpYWBiZGhMnCoA9Ugwcw</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Qiu, Xiangfei</creator><creator>Li, Xiuwen</creator><creator>Pang, Ruiyang</creator><creator>Pan, Zhicheng</creator><creator>Wu, Xingjian</creator><creator>Liu, Yang</creator><creator>Hu, Jilin</creator><creator>Yang, Shu</creator><creator>Lu, Xuesong</creator><creator>Yang, Chengcheng</creator><creator>Guo, Chenjuan</creator><creator>Zhou, Aoying</creator><creator>Jensen, Christian S</creator><creator>Yang, Bin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241223</creationdate><title>EasyTime: Time Series Forecasting Made Easy</title><author>Qiu, Xiangfei ; Li, Xiuwen ; Pang, Ruiyang ; Pan, Zhicheng ; Wu, Xingjian ; Liu, Yang ; Hu, Jilin ; Yang, Shu ; Lu, Xuesong ; Yang, Chengcheng ; Guo, Chenjuan ; Zhou, Aoying ; Jensen, Christian S ; Yang, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31489804213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Datasets</topic><topic>Forecasting</topic><topic>Large language models</topic><topic>Modules</topic><topic>Natural language</topic><topic>Time series</topic><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Xiangfei</creatorcontrib><creatorcontrib>Li, Xiuwen</creatorcontrib><creatorcontrib>Pang, Ruiyang</creatorcontrib><creatorcontrib>Pan, Zhicheng</creatorcontrib><creatorcontrib>Wu, Xingjian</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Hu, Jilin</creatorcontrib><creatorcontrib>Yang, Shu</creatorcontrib><creatorcontrib>Lu, Xuesong</creatorcontrib><creatorcontrib>Yang, Chengcheng</creatorcontrib><creatorcontrib>Guo, Chenjuan</creatorcontrib><creatorcontrib>Zhou, Aoying</creatorcontrib><creatorcontrib>Jensen, Christian S</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Xiangfei</au><au>Li, Xiuwen</au><au>Pang, Ruiyang</au><au>Pan, Zhicheng</au><au>Wu, Xingjian</au><au>Liu, Yang</au><au>Hu, Jilin</au><au>Yang, Shu</au><au>Lu, Xuesong</au><au>Yang, Chengcheng</au><au>Guo, Chenjuan</au><au>Zhou, Aoying</au><au>Jensen, Christian S</au><au>Yang, Bin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>EasyTime: Time Series Forecasting Made Easy</atitle><jtitle>arXiv.org</jtitle><date>2024-12-23</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Time series forecasting has important applications across diverse domains. EasyTime, the system we demonstrate, facilitates easy use of time-series forecasting methods by researchers and practitioners alike. First, EasyTime enables one-click evaluation, enabling researchers to evaluate new forecasting methods using the suite of diverse time series datasets collected in the preexisting time series forecasting benchmark (TFB). This is achieved by leveraging TFB's flexible and consistent evaluation pipeline. Second, when practitioners must perform forecasting on a new dataset, a nontrivial first step is often to find an appropriate forecasting method. EasyTime provides an Automated Ensemble module that combines the promising forecasting methods to yield superior forecasting accuracy compared to individual methods. Third, EasyTime offers a natural language Q&A module leveraging large language models. Given a question like "Which method is best for long term forecasting on time series with strong seasonality?", EasyTime converts the question into SQL queries on the database of results obtained by TFB and then returns an answer in natural language and charts. By demonstrating EasyTime, we intend to show how it is possible to simplify the use of time series forecasting and to offer better support for the development of new generations of time series forecasting methods.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3148980421 |
source | Free E- Journals |
subjects | Datasets Forecasting Large language models Modules Natural language Time series |
title | EasyTime: Time Series Forecasting Made Easy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=EasyTime:%20Time%20Series%20Forecasting%20Made%20Easy&rft.jtitle=arXiv.org&rft.au=Qiu,%20Xiangfei&rft.date=2024-12-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3148980421%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148980421&rft_id=info:pmid/&rfr_iscdi=true |