Mapping the Mind of an Instruction-based Image Editing using SMILE

Despite recent advancements in Instruct-based Image Editing models for generating high-quality images, they are known as black boxes and a significant barrier to transparency and user trust. To solve this issue, we introduce SMILE (Statistical Model-agnostic Interpretability with Local Explanations)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Dehghani, Zeinab, Aslansefat, Koorosh, Khan, Adil, Adín Ramírez Rivera, Franky, George, Khalid, Muhammad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dehghani, Zeinab
Aslansefat, Koorosh
Khan, Adil
Adín Ramírez Rivera
Franky, George
Khalid, Muhammad
description Despite recent advancements in Instruct-based Image Editing models for generating high-quality images, they are known as black boxes and a significant barrier to transparency and user trust. To solve this issue, we introduce SMILE (Statistical Model-agnostic Interpretability with Local Explanations), a novel model-agnostic for localized interpretability that provides a visual heatmap to clarify the textual elements' influence on image-generating models. We applied our method to various Instruction-based Image Editing models like Pix2Pix, Image2Image-turbo and Diffusers-Inpaint and showed how our model can improve interpretability and reliability. Also, we use stability, accuracy, fidelity, and consistency metrics to evaluate our method. These findings indicate the exciting potential of model-agnostic interpretability for reliability and trustworthiness in critical applications such as healthcare and autonomous driving while encouraging additional investigation into the significance of interpretability in enhancing dependable image editing models.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3148961205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148961205</sourcerecordid><originalsourceid>FETCH-proquest_journals_31489612053</originalsourceid><addsrcrecordid>eNqNikELgjAYQEcQJOV_-KCzMDc1uxaLhDzVXWabNqnN_Lb_X0I_oMt7h_cWJGKcp0mZMbYiMeJAKWXFjuU5j8ihluNobA_-oaE2VoHrQFqoLPop3L1xNmklagXVS_YahDJ-3gPOvNbVRWzIspNP1PHPa7I9idvxnIyTeweNvhlcmOw3NTzNyn2RMprz_64PJeE4gw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148961205</pqid></control><display><type>article</type><title>Mapping the Mind of an Instruction-based Image Editing using SMILE</title><source>Free E- Journals</source><creator>Dehghani, Zeinab ; Aslansefat, Koorosh ; Khan, Adil ; Adín Ramírez Rivera ; Franky, George ; Khalid, Muhammad</creator><creatorcontrib>Dehghani, Zeinab ; Aslansefat, Koorosh ; Khan, Adil ; Adín Ramírez Rivera ; Franky, George ; Khalid, Muhammad</creatorcontrib><description>Despite recent advancements in Instruct-based Image Editing models for generating high-quality images, they are known as black boxes and a significant barrier to transparency and user trust. To solve this issue, we introduce SMILE (Statistical Model-agnostic Interpretability with Local Explanations), a novel model-agnostic for localized interpretability that provides a visual heatmap to clarify the textual elements' influence on image-generating models. We applied our method to various Instruction-based Image Editing models like Pix2Pix, Image2Image-turbo and Diffusers-Inpaint and showed how our model can improve interpretability and reliability. Also, we use stability, accuracy, fidelity, and consistency metrics to evaluate our method. These findings indicate the exciting potential of model-agnostic interpretability for reliability and trustworthiness in critical applications such as healthcare and autonomous driving while encouraging additional investigation into the significance of interpretability in enhancing dependable image editing models.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Diffusers ; Editing ; Image quality ; Reliability ; Statistical models</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Dehghani, Zeinab</creatorcontrib><creatorcontrib>Aslansefat, Koorosh</creatorcontrib><creatorcontrib>Khan, Adil</creatorcontrib><creatorcontrib>Adín Ramírez Rivera</creatorcontrib><creatorcontrib>Franky, George</creatorcontrib><creatorcontrib>Khalid, Muhammad</creatorcontrib><title>Mapping the Mind of an Instruction-based Image Editing using SMILE</title><title>arXiv.org</title><description>Despite recent advancements in Instruct-based Image Editing models for generating high-quality images, they are known as black boxes and a significant barrier to transparency and user trust. To solve this issue, we introduce SMILE (Statistical Model-agnostic Interpretability with Local Explanations), a novel model-agnostic for localized interpretability that provides a visual heatmap to clarify the textual elements' influence on image-generating models. We applied our method to various Instruction-based Image Editing models like Pix2Pix, Image2Image-turbo and Diffusers-Inpaint and showed how our model can improve interpretability and reliability. Also, we use stability, accuracy, fidelity, and consistency metrics to evaluate our method. These findings indicate the exciting potential of model-agnostic interpretability for reliability and trustworthiness in critical applications such as healthcare and autonomous driving while encouraging additional investigation into the significance of interpretability in enhancing dependable image editing models.</description><subject>Diffusers</subject><subject>Editing</subject><subject>Image quality</subject><subject>Reliability</subject><subject>Statistical models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikELgjAYQEcQJOV_-KCzMDc1uxaLhDzVXWabNqnN_Lb_X0I_oMt7h_cWJGKcp0mZMbYiMeJAKWXFjuU5j8ihluNobA_-oaE2VoHrQFqoLPop3L1xNmklagXVS_YahDJ-3gPOvNbVRWzIspNP1PHPa7I9idvxnIyTeweNvhlcmOw3NTzNyn2RMprz_64PJeE4gw</recordid><startdate>20241220</startdate><enddate>20241220</enddate><creator>Dehghani, Zeinab</creator><creator>Aslansefat, Koorosh</creator><creator>Khan, Adil</creator><creator>Adín Ramírez Rivera</creator><creator>Franky, George</creator><creator>Khalid, Muhammad</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241220</creationdate><title>Mapping the Mind of an Instruction-based Image Editing using SMILE</title><author>Dehghani, Zeinab ; Aslansefat, Koorosh ; Khan, Adil ; Adín Ramírez Rivera ; Franky, George ; Khalid, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31489612053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Diffusers</topic><topic>Editing</topic><topic>Image quality</topic><topic>Reliability</topic><topic>Statistical models</topic><toplevel>online_resources</toplevel><creatorcontrib>Dehghani, Zeinab</creatorcontrib><creatorcontrib>Aslansefat, Koorosh</creatorcontrib><creatorcontrib>Khan, Adil</creatorcontrib><creatorcontrib>Adín Ramírez Rivera</creatorcontrib><creatorcontrib>Franky, George</creatorcontrib><creatorcontrib>Khalid, Muhammad</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dehghani, Zeinab</au><au>Aslansefat, Koorosh</au><au>Khan, Adil</au><au>Adín Ramírez Rivera</au><au>Franky, George</au><au>Khalid, Muhammad</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Mapping the Mind of an Instruction-based Image Editing using SMILE</atitle><jtitle>arXiv.org</jtitle><date>2024-12-20</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Despite recent advancements in Instruct-based Image Editing models for generating high-quality images, they are known as black boxes and a significant barrier to transparency and user trust. To solve this issue, we introduce SMILE (Statistical Model-agnostic Interpretability with Local Explanations), a novel model-agnostic for localized interpretability that provides a visual heatmap to clarify the textual elements' influence on image-generating models. We applied our method to various Instruction-based Image Editing models like Pix2Pix, Image2Image-turbo and Diffusers-Inpaint and showed how our model can improve interpretability and reliability. Also, we use stability, accuracy, fidelity, and consistency metrics to evaluate our method. These findings indicate the exciting potential of model-agnostic interpretability for reliability and trustworthiness in critical applications such as healthcare and autonomous driving while encouraging additional investigation into the significance of interpretability in enhancing dependable image editing models.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3148961205
source Free E- Journals
subjects Diffusers
Editing
Image quality
Reliability
Statistical models
title Mapping the Mind of an Instruction-based Image Editing using SMILE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T07%3A11%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Mapping%20the%20Mind%20of%20an%20Instruction-based%20Image%20Editing%20using%20SMILE&rft.jtitle=arXiv.org&rft.au=Dehghani,%20Zeinab&rft.date=2024-12-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3148961205%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148961205&rft_id=info:pmid/&rfr_iscdi=true