Zero-Shot Image Moderation in Google Ads with LLM-Assisted Textual Descriptions and Cross-modal Co-embeddings

We present a scalable and agile approach for ads image content moderation at Google, addressing the challenges of moderating massive volumes of ads with diverse content and evolving policies. The proposed method utilizes human-curated textual descriptions and cross-modal text-image co-embeddings to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
Hauptverfasser: Luo, Enming, Qiao, Wei, Warren, Katie, Li, Jingxiang, Xiao, Eric, Viswanathan, Krishna, Wang, Yuan, Liu, Yintao, Li, Jimin, Fuxman, Ariel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Luo, Enming
Qiao, Wei
Warren, Katie
Li, Jingxiang
Xiao, Eric
Viswanathan, Krishna
Wang, Yuan
Liu, Yintao
Li, Jimin
Fuxman, Ariel
description We present a scalable and agile approach for ads image content moderation at Google, addressing the challenges of moderating massive volumes of ads with diverse content and evolving policies. The proposed method utilizes human-curated textual descriptions and cross-modal text-image co-embeddings to enable zero-shot classification of policy violating ads images, bypassing the need for extensive supervised training data and human labeling. By leveraging large language models (LLMs) and user expertise, the system generates and refines a comprehensive set of textual descriptions representing policy guidelines. During inference, co-embedding similarity between incoming images and the textual descriptions serves as a reliable signal for policy violation detection, enabling efficient and adaptable ads content moderation. Evaluation results demonstrate the efficacy of this framework in significantly boosting the detection of policy violating content.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3148958653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148958653</sourcerecordid><originalsourceid>FETCH-proquest_journals_31489586533</originalsourceid><addsrcrecordid>eNqNi8sOATEUQBuJhOAfbmLdZLSGsZTxTFixspHSa1RmeunthM9H4gOszuKc0xBtpfVAZkOlWqLHfEuSRI3GKk11W1QHDCR3V4qwrkyBsCWLwURHHpyHJVFRIkwtw9PFK2w2WzlldhzRwh5fsTYlzJDPwd2_D4PxFvJAzLIi-5E5SaxOaK3zBXdF82JKxt6PHdFfzPf5St4DPWrkeLxRHfxHHfVgmE3SbJRq_V_1BkZBSNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148958653</pqid></control><display><type>article</type><title>Zero-Shot Image Moderation in Google Ads with LLM-Assisted Textual Descriptions and Cross-modal Co-embeddings</title><source>Free E- Journals</source><creator>Luo, Enming ; Qiao, Wei ; Warren, Katie ; Li, Jingxiang ; Xiao, Eric ; Viswanathan, Krishna ; Wang, Yuan ; Liu, Yintao ; Li, Jimin ; Fuxman, Ariel</creator><creatorcontrib>Luo, Enming ; Qiao, Wei ; Warren, Katie ; Li, Jingxiang ; Xiao, Eric ; Viswanathan, Krishna ; Wang, Yuan ; Liu, Yintao ; Li, Jimin ; Fuxman, Ariel</creatorcontrib><description>We present a scalable and agile approach for ads image content moderation at Google, addressing the challenges of moderating massive volumes of ads with diverse content and evolving policies. The proposed method utilizes human-curated textual descriptions and cross-modal text-image co-embeddings to enable zero-shot classification of policy violating ads images, bypassing the need for extensive supervised training data and human labeling. By leveraging large language models (LLMs) and user expertise, the system generates and refines a comprehensive set of textual descriptions representing policy guidelines. During inference, co-embedding similarity between incoming images and the textual descriptions serves as a reliable signal for policy violation detection, enabling efficient and adaptable ads content moderation. Evaluation results demonstrate the efficacy of this framework in significantly boosting the detection of policy violating content.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Descriptions ; Large language models</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Luo, Enming</creatorcontrib><creatorcontrib>Qiao, Wei</creatorcontrib><creatorcontrib>Warren, Katie</creatorcontrib><creatorcontrib>Li, Jingxiang</creatorcontrib><creatorcontrib>Xiao, Eric</creatorcontrib><creatorcontrib>Viswanathan, Krishna</creatorcontrib><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Liu, Yintao</creatorcontrib><creatorcontrib>Li, Jimin</creatorcontrib><creatorcontrib>Fuxman, Ariel</creatorcontrib><title>Zero-Shot Image Moderation in Google Ads with LLM-Assisted Textual Descriptions and Cross-modal Co-embeddings</title><title>arXiv.org</title><description>We present a scalable and agile approach for ads image content moderation at Google, addressing the challenges of moderating massive volumes of ads with diverse content and evolving policies. The proposed method utilizes human-curated textual descriptions and cross-modal text-image co-embeddings to enable zero-shot classification of policy violating ads images, bypassing the need for extensive supervised training data and human labeling. By leveraging large language models (LLMs) and user expertise, the system generates and refines a comprehensive set of textual descriptions representing policy guidelines. During inference, co-embedding similarity between incoming images and the textual descriptions serves as a reliable signal for policy violation detection, enabling efficient and adaptable ads content moderation. Evaluation results demonstrate the efficacy of this framework in significantly boosting the detection of policy violating content.</description><subject>Descriptions</subject><subject>Large language models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNi8sOATEUQBuJhOAfbmLdZLSGsZTxTFixspHSa1RmeunthM9H4gOszuKc0xBtpfVAZkOlWqLHfEuSRI3GKk11W1QHDCR3V4qwrkyBsCWLwURHHpyHJVFRIkwtw9PFK2w2WzlldhzRwh5fsTYlzJDPwd2_D4PxFvJAzLIi-5E5SaxOaK3zBXdF82JKxt6PHdFfzPf5St4DPWrkeLxRHfxHHfVgmE3SbJRq_V_1BkZBSNo</recordid><startdate>20241218</startdate><enddate>20241218</enddate><creator>Luo, Enming</creator><creator>Qiao, Wei</creator><creator>Warren, Katie</creator><creator>Li, Jingxiang</creator><creator>Xiao, Eric</creator><creator>Viswanathan, Krishna</creator><creator>Wang, Yuan</creator><creator>Liu, Yintao</creator><creator>Li, Jimin</creator><creator>Fuxman, Ariel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241218</creationdate><title>Zero-Shot Image Moderation in Google Ads with LLM-Assisted Textual Descriptions and Cross-modal Co-embeddings</title><author>Luo, Enming ; Qiao, Wei ; Warren, Katie ; Li, Jingxiang ; Xiao, Eric ; Viswanathan, Krishna ; Wang, Yuan ; Liu, Yintao ; Li, Jimin ; Fuxman, Ariel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31489586533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Descriptions</topic><topic>Large language models</topic><toplevel>online_resources</toplevel><creatorcontrib>Luo, Enming</creatorcontrib><creatorcontrib>Qiao, Wei</creatorcontrib><creatorcontrib>Warren, Katie</creatorcontrib><creatorcontrib>Li, Jingxiang</creatorcontrib><creatorcontrib>Xiao, Eric</creatorcontrib><creatorcontrib>Viswanathan, Krishna</creatorcontrib><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Liu, Yintao</creatorcontrib><creatorcontrib>Li, Jimin</creatorcontrib><creatorcontrib>Fuxman, Ariel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Enming</au><au>Qiao, Wei</au><au>Warren, Katie</au><au>Li, Jingxiang</au><au>Xiao, Eric</au><au>Viswanathan, Krishna</au><au>Wang, Yuan</au><au>Liu, Yintao</au><au>Li, Jimin</au><au>Fuxman, Ariel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Zero-Shot Image Moderation in Google Ads with LLM-Assisted Textual Descriptions and Cross-modal Co-embeddings</atitle><jtitle>arXiv.org</jtitle><date>2024-12-18</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We present a scalable and agile approach for ads image content moderation at Google, addressing the challenges of moderating massive volumes of ads with diverse content and evolving policies. The proposed method utilizes human-curated textual descriptions and cross-modal text-image co-embeddings to enable zero-shot classification of policy violating ads images, bypassing the need for extensive supervised training data and human labeling. By leveraging large language models (LLMs) and user expertise, the system generates and refines a comprehensive set of textual descriptions representing policy guidelines. During inference, co-embedding similarity between incoming images and the textual descriptions serves as a reliable signal for policy violation detection, enabling efficient and adaptable ads content moderation. Evaluation results demonstrate the efficacy of this framework in significantly boosting the detection of policy violating content.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3148958653
source Free E- Journals
subjects Descriptions
Large language models
title Zero-Shot Image Moderation in Google Ads with LLM-Assisted Textual Descriptions and Cross-modal Co-embeddings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Zero-Shot%20Image%20Moderation%20in%20Google%20Ads%20with%20LLM-Assisted%20Textual%20Descriptions%20and%20Cross-modal%20Co-embeddings&rft.jtitle=arXiv.org&rft.au=Luo,%20Enming&rft.date=2024-12-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3148958653%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148958653&rft_id=info:pmid/&rfr_iscdi=true