X-Ray-Driven Photon Bunching
Hanbury Brown and Twiss (HBT) interferometry is a milestone experiment that transformed our understanding of the nature of light. The concept was demonstrated in 1956 to measure the radii of stars through photon coincidence detection. This form of coincidence detection later became a cornerstone of...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Katznelson, Shaul Kasten, Noam Tziperman, Offek Shultzman, Avner Bucher, Tomer Tom Lenkiewicz Abudi Schuetz, Roman Orr Be'er Levy, Shai Strassberg, Rotem Dosovitsky, Georgy Yanagimoto, Sotatsu Loignon-Houle, Francis Bekenstein, Yehonadav Roques-Carmes, Charles Kaminer, Ido |
description | Hanbury Brown and Twiss (HBT) interferometry is a milestone experiment that transformed our understanding of the nature of light. The concept was demonstrated in 1956 to measure the radii of stars through photon coincidence detection. This form of coincidence detection later became a cornerstone of modern quantum optics. Here we connect HBT interferometry to the physics of scintillation, the process of spontaneous light emission upon excitation by high-energy particles, such as x-rays. Our work reveals intrinsic photon bunching in the scintillation process, which we utilize to elucidate its underlying light emission mechanisms. Specifically, g^((2) ) ({\tau}) enables the quantitative extraction of scintillation lifetime and light yield, showing their dependence on temperature and X-ray flux as well. This approach provides a characterization method that we benchmark on a wide gamut of scintillators, including rare-earth-doped garnets and perovskite nanocrystals. Our method is particularly important for nano- and micro-scale scintillators, whose properties are challenging to quantify by conventional means: We extract the scintillation properties in perovskite nanocrystals of only a few hundreds of nanometers, observing strong photon bunching (g^((2) ) (0)>50). Our research paves the way for broader use of photon-coincidence measurement and methods from quantum optics in studying materials with complex optical properties in extremes regions of the electromagnetic spectrum. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3148948047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148948047</sourcerecordid><originalsourceid>FETCH-proquest_journals_31489480473</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQidANSqzUdSnKLEvNUwjIyC_Jz1NwKs1LzsjMS-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXhjQxMLSxMLAxNzY-JUAQDzWCst</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148948047</pqid></control><display><type>article</type><title>X-Ray-Driven Photon Bunching</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Katznelson, Shaul ; Kasten, Noam ; Tziperman, Offek ; Shultzman, Avner ; Bucher, Tomer ; Tom Lenkiewicz Abudi ; Schuetz, Roman ; Orr Be'er ; Levy, Shai ; Strassberg, Rotem ; Dosovitsky, Georgy ; Yanagimoto, Sotatsu ; Loignon-Houle, Francis ; Bekenstein, Yehonadav ; Roques-Carmes, Charles ; Kaminer, Ido</creator><creatorcontrib>Katznelson, Shaul ; Kasten, Noam ; Tziperman, Offek ; Shultzman, Avner ; Bucher, Tomer ; Tom Lenkiewicz Abudi ; Schuetz, Roman ; Orr Be'er ; Levy, Shai ; Strassberg, Rotem ; Dosovitsky, Georgy ; Yanagimoto, Sotatsu ; Loignon-Houle, Francis ; Bekenstein, Yehonadav ; Roques-Carmes, Charles ; Kaminer, Ido</creatorcontrib><description>Hanbury Brown and Twiss (HBT) interferometry is a milestone experiment that transformed our understanding of the nature of light. The concept was demonstrated in 1956 to measure the radii of stars through photon coincidence detection. This form of coincidence detection later became a cornerstone of modern quantum optics. Here we connect HBT interferometry to the physics of scintillation, the process of spontaneous light emission upon excitation by high-energy particles, such as x-rays. Our work reveals intrinsic photon bunching in the scintillation process, which we utilize to elucidate its underlying light emission mechanisms. Specifically, g^((2) ) ({\tau}) enables the quantitative extraction of scintillation lifetime and light yield, showing their dependence on temperature and X-ray flux as well. This approach provides a characterization method that we benchmark on a wide gamut of scintillators, including rare-earth-doped garnets and perovskite nanocrystals. Our method is particularly important for nano- and micro-scale scintillators, whose properties are challenging to quantify by conventional means: We extract the scintillation properties in perovskite nanocrystals of only a few hundreds of nanometers, observing strong photon bunching (g^((2) ) (0)>50). Our research paves the way for broader use of photon-coincidence measurement and methods from quantum optics in studying materials with complex optical properties in extremes regions of the electromagnetic spectrum.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bunching ; Interferometry ; Light emission ; Nanocrystals ; Optical properties ; Perovskites ; Photons ; Quantum optics ; Rare earth elements ; Scintillation ; Scintillation counters ; Temperature dependence ; X-rays</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Katznelson, Shaul</creatorcontrib><creatorcontrib>Kasten, Noam</creatorcontrib><creatorcontrib>Tziperman, Offek</creatorcontrib><creatorcontrib>Shultzman, Avner</creatorcontrib><creatorcontrib>Bucher, Tomer</creatorcontrib><creatorcontrib>Tom Lenkiewicz Abudi</creatorcontrib><creatorcontrib>Schuetz, Roman</creatorcontrib><creatorcontrib>Orr Be'er</creatorcontrib><creatorcontrib>Levy, Shai</creatorcontrib><creatorcontrib>Strassberg, Rotem</creatorcontrib><creatorcontrib>Dosovitsky, Georgy</creatorcontrib><creatorcontrib>Yanagimoto, Sotatsu</creatorcontrib><creatorcontrib>Loignon-Houle, Francis</creatorcontrib><creatorcontrib>Bekenstein, Yehonadav</creatorcontrib><creatorcontrib>Roques-Carmes, Charles</creatorcontrib><creatorcontrib>Kaminer, Ido</creatorcontrib><title>X-Ray-Driven Photon Bunching</title><title>arXiv.org</title><description>Hanbury Brown and Twiss (HBT) interferometry is a milestone experiment that transformed our understanding of the nature of light. The concept was demonstrated in 1956 to measure the radii of stars through photon coincidence detection. This form of coincidence detection later became a cornerstone of modern quantum optics. Here we connect HBT interferometry to the physics of scintillation, the process of spontaneous light emission upon excitation by high-energy particles, such as x-rays. Our work reveals intrinsic photon bunching in the scintillation process, which we utilize to elucidate its underlying light emission mechanisms. Specifically, g^((2) ) ({\tau}) enables the quantitative extraction of scintillation lifetime and light yield, showing their dependence on temperature and X-ray flux as well. This approach provides a characterization method that we benchmark on a wide gamut of scintillators, including rare-earth-doped garnets and perovskite nanocrystals. Our method is particularly important for nano- and micro-scale scintillators, whose properties are challenging to quantify by conventional means: We extract the scintillation properties in perovskite nanocrystals of only a few hundreds of nanometers, observing strong photon bunching (g^((2) ) (0)>50). Our research paves the way for broader use of photon-coincidence measurement and methods from quantum optics in studying materials with complex optical properties in extremes regions of the electromagnetic spectrum.</description><subject>Bunching</subject><subject>Interferometry</subject><subject>Light emission</subject><subject>Nanocrystals</subject><subject>Optical properties</subject><subject>Perovskites</subject><subject>Photons</subject><subject>Quantum optics</subject><subject>Rare earth elements</subject><subject>Scintillation</subject><subject>Scintillation counters</subject><subject>Temperature dependence</subject><subject>X-rays</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQidANSqzUdSnKLEvNUwjIyC_Jz1NwKs1LzsjMS-dhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXhjQxMLSxMLAxNzY-JUAQDzWCst</recordid><startdate>20241222</startdate><enddate>20241222</enddate><creator>Katznelson, Shaul</creator><creator>Kasten, Noam</creator><creator>Tziperman, Offek</creator><creator>Shultzman, Avner</creator><creator>Bucher, Tomer</creator><creator>Tom Lenkiewicz Abudi</creator><creator>Schuetz, Roman</creator><creator>Orr Be'er</creator><creator>Levy, Shai</creator><creator>Strassberg, Rotem</creator><creator>Dosovitsky, Georgy</creator><creator>Yanagimoto, Sotatsu</creator><creator>Loignon-Houle, Francis</creator><creator>Bekenstein, Yehonadav</creator><creator>Roques-Carmes, Charles</creator><creator>Kaminer, Ido</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241222</creationdate><title>X-Ray-Driven Photon Bunching</title><author>Katznelson, Shaul ; Kasten, Noam ; Tziperman, Offek ; Shultzman, Avner ; Bucher, Tomer ; Tom Lenkiewicz Abudi ; Schuetz, Roman ; Orr Be'er ; Levy, Shai ; Strassberg, Rotem ; Dosovitsky, Georgy ; Yanagimoto, Sotatsu ; Loignon-Houle, Francis ; Bekenstein, Yehonadav ; Roques-Carmes, Charles ; Kaminer, Ido</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31489480473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bunching</topic><topic>Interferometry</topic><topic>Light emission</topic><topic>Nanocrystals</topic><topic>Optical properties</topic><topic>Perovskites</topic><topic>Photons</topic><topic>Quantum optics</topic><topic>Rare earth elements</topic><topic>Scintillation</topic><topic>Scintillation counters</topic><topic>Temperature dependence</topic><topic>X-rays</topic><toplevel>online_resources</toplevel><creatorcontrib>Katznelson, Shaul</creatorcontrib><creatorcontrib>Kasten, Noam</creatorcontrib><creatorcontrib>Tziperman, Offek</creatorcontrib><creatorcontrib>Shultzman, Avner</creatorcontrib><creatorcontrib>Bucher, Tomer</creatorcontrib><creatorcontrib>Tom Lenkiewicz Abudi</creatorcontrib><creatorcontrib>Schuetz, Roman</creatorcontrib><creatorcontrib>Orr Be'er</creatorcontrib><creatorcontrib>Levy, Shai</creatorcontrib><creatorcontrib>Strassberg, Rotem</creatorcontrib><creatorcontrib>Dosovitsky, Georgy</creatorcontrib><creatorcontrib>Yanagimoto, Sotatsu</creatorcontrib><creatorcontrib>Loignon-Houle, Francis</creatorcontrib><creatorcontrib>Bekenstein, Yehonadav</creatorcontrib><creatorcontrib>Roques-Carmes, Charles</creatorcontrib><creatorcontrib>Kaminer, Ido</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katznelson, Shaul</au><au>Kasten, Noam</au><au>Tziperman, Offek</au><au>Shultzman, Avner</au><au>Bucher, Tomer</au><au>Tom Lenkiewicz Abudi</au><au>Schuetz, Roman</au><au>Orr Be'er</au><au>Levy, Shai</au><au>Strassberg, Rotem</au><au>Dosovitsky, Georgy</au><au>Yanagimoto, Sotatsu</au><au>Loignon-Houle, Francis</au><au>Bekenstein, Yehonadav</au><au>Roques-Carmes, Charles</au><au>Kaminer, Ido</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>X-Ray-Driven Photon Bunching</atitle><jtitle>arXiv.org</jtitle><date>2024-12-22</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Hanbury Brown and Twiss (HBT) interferometry is a milestone experiment that transformed our understanding of the nature of light. The concept was demonstrated in 1956 to measure the radii of stars through photon coincidence detection. This form of coincidence detection later became a cornerstone of modern quantum optics. Here we connect HBT interferometry to the physics of scintillation, the process of spontaneous light emission upon excitation by high-energy particles, such as x-rays. Our work reveals intrinsic photon bunching in the scintillation process, which we utilize to elucidate its underlying light emission mechanisms. Specifically, g^((2) ) ({\tau}) enables the quantitative extraction of scintillation lifetime and light yield, showing their dependence on temperature and X-ray flux as well. This approach provides a characterization method that we benchmark on a wide gamut of scintillators, including rare-earth-doped garnets and perovskite nanocrystals. Our method is particularly important for nano- and micro-scale scintillators, whose properties are challenging to quantify by conventional means: We extract the scintillation properties in perovskite nanocrystals of only a few hundreds of nanometers, observing strong photon bunching (g^((2) ) (0)>50). Our research paves the way for broader use of photon-coincidence measurement and methods from quantum optics in studying materials with complex optical properties in extremes regions of the electromagnetic spectrum.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3148948047 |
source | Open Access: Freely Accessible Journals by multiple vendors |
subjects | Bunching Interferometry Light emission Nanocrystals Optical properties Perovskites Photons Quantum optics Rare earth elements Scintillation Scintillation counters Temperature dependence X-rays |
title | X-Ray-Driven Photon Bunching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A15%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=X-Ray-Driven%20Photon%20Bunching&rft.jtitle=arXiv.org&rft.au=Katznelson,%20Shaul&rft.date=2024-12-22&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3148948047%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148948047&rft_id=info:pmid/&rfr_iscdi=true |