Constraining Uncertainties in Marine Calcifier Oxygen Isotope Values (δ18O ${\boldsymbol{\delta }}^{\mathbf{18}}\mathbf{O}$) Across Latitudes and Kingdoms Using a Proxy System Modeling Framework

Paleoceanographic proxy archives encode information about the marine environment, which can yield key insights into past climate variability. In particular, marine calcifiers' stable oxygen isotopic composition (δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$) tells us about seawater temp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Paleoceanography and paleoclimatology 2024-12, Vol.39 (12), p.n/a
Hauptverfasser: Williams, Branwen, Thompson, Diane M., Cohen, Anne L., Mandell, Hannah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Paleoceanography and paleoclimatology
container_volume 39
creator Williams, Branwen
Thompson, Diane M.
Cohen, Anne L.
Mandell, Hannah
description Paleoceanographic proxy archives encode information about the marine environment, which can yield key insights into past climate variability. In particular, marine calcifiers' stable oxygen isotopic composition (δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$) tells us about seawater temperature and oxygen isotope composition. Here, we use a proxy system model (PSM) framework to systematically evaluate the drivers of skeletal/shell δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ in three taxa of fast‐growing marine calcifiers (crustose coralline algae, bivalves, and sclerosponges) from disparate locations, including high latitudes and deeper waters. We evaluate the impact of the quality of environmental data, the recording season in which the calcifier might document the environmental variability, and the importance of uncertainties on the PSM. Whereas the overall PSM‐modeled δ18Opseudocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{pseudocarb}}$ captured the measured δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ well at some locations, local environmental variability derived from a reanalysis product and chronological uncertainties limit the ability to effectively model δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ at other locations. Using the PSM approach we highlight the complexity of interpreting δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ as seawater temperature and oxygen isotope composition in these remote locations. Plain Language Summary Marine stony algae, clams, and sponges, form hard skeletons or shells and can live for hundreds of years, making them important recorders of their environment. Chemical measurements of the hard parts of these marine organisms capture changes in seawater temperature and how water cycles between the ocean and atmosphere as rainfall, both of which are changing due to human activities. By measuring the chemistry throughout the lifespan of the organisms, we can understand environmental variability before and since these human pressures. We test a simple model that relates the environmental changes to the chemical composition recorded in the hard parts of these marine organisms across a geographical range of ocean environments. We evaluate the importance of the quality of the environmental data, biological information about the growth of the organism, and uncertainty in the measurement itself on the model's effectiveness. We find that the model performs well at some locations, supporting
doi_str_mv 10.1029/2023PA004759
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3148782806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148782806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1092-c04451983ac739a57049badc03fd54189bb3607633fd08e81e7880c9d562ad7b3</originalsourceid><addsrcrecordid>eNp9kc9uEzEQxlcIJKrSGw9giR5AamBs78b2MYpaqEi1kSCcIlbetbe47Nqp7ahdRftWvEHvfSYcAogTp_mjn775ZibLXmJ4i4GIdwQIXc4AclaIJ9kRKRiZ5AUpnv7NMXuenYRwAwBY0JwTcZQ9zJ0N0Utjjb1GK9toH1MRjQ7IWHQlvbEazWXXmNZoj8r74VpbdBlcdBuNvshum8jXjz8wL9Hpbl27ToWhT2G3VrqLEo3j1926l_Fb3e4wH8c_eTmevkGzxrsQ0EJGE7cqKUmr0MdkRbk-oFXYm5Jo6d39gD4NIeoeXbmku-9feNnrO-e_v8ietbIL-uR3PM5WF-ef5x8mi_L95Xy2mDQYBJk0kKcbCE5lw6iQBYNc1FI1QFtV5JiLuqZTYFOaauCaY804h0aoYkqkYjU9zl4ddDfe3aa1Y3Xjtt6mkRXFOWeccJgm6uxA_VrN67baeNNLP1QYqv2nqn8_lXB6wO9Mp4f_stVytigJzhmhPwEgrJhu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148782806</pqid></control><display><type>article</type><title>Constraining Uncertainties in Marine Calcifier Oxygen Isotope Values (δ18O ${\boldsymbol{\delta }}^{\mathbf{18}}\mathbf{O}$) Across Latitudes and Kingdoms Using a Proxy System Modeling Framework</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Williams, Branwen ; Thompson, Diane M. ; Cohen, Anne L. ; Mandell, Hannah</creator><creatorcontrib>Williams, Branwen ; Thompson, Diane M. ; Cohen, Anne L. ; Mandell, Hannah</creatorcontrib><description>Paleoceanographic proxy archives encode information about the marine environment, which can yield key insights into past climate variability. In particular, marine calcifiers' stable oxygen isotopic composition (δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$) tells us about seawater temperature and oxygen isotope composition. Here, we use a proxy system model (PSM) framework to systematically evaluate the drivers of skeletal/shell δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ in three taxa of fast‐growing marine calcifiers (crustose coralline algae, bivalves, and sclerosponges) from disparate locations, including high latitudes and deeper waters. We evaluate the impact of the quality of environmental data, the recording season in which the calcifier might document the environmental variability, and the importance of uncertainties on the PSM. Whereas the overall PSM‐modeled δ18Opseudocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{pseudocarb}}$ captured the measured δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ well at some locations, local environmental variability derived from a reanalysis product and chronological uncertainties limit the ability to effectively model δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ at other locations. Using the PSM approach we highlight the complexity of interpreting δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ as seawater temperature and oxygen isotope composition in these remote locations. Plain Language Summary Marine stony algae, clams, and sponges, form hard skeletons or shells and can live for hundreds of years, making them important recorders of their environment. Chemical measurements of the hard parts of these marine organisms capture changes in seawater temperature and how water cycles between the ocean and atmosphere as rainfall, both of which are changing due to human activities. By measuring the chemistry throughout the lifespan of the organisms, we can understand environmental variability before and since these human pressures. We test a simple model that relates the environmental changes to the chemical composition recorded in the hard parts of these marine organisms across a geographical range of ocean environments. We evaluate the importance of the quality of the environmental data, biological information about the growth of the organism, and uncertainty in the measurement itself on the model's effectiveness. We find that the model performs well at some locations, supporting its applications to these diverse types of marine life from different locations. Key Points Proxy system modeling captures oxygen isotopic composition of marine calcifiers Quality of environmental data, calcifier growth characteristics, and age uncertainties impact model performance Analysis emphasizes the importance of strong environmental signals</description><identifier>ISSN: 2572-4517</identifier><identifier>EISSN: 2572-4525</identifier><identifier>DOI: 10.1029/2023PA004759</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Algae ; Biological effects ; Chemical composition ; Climate models ; Climate variability ; Environmental changes ; Environmental quality ; Human influences ; Hydrologic cycle ; Hydrological cycle ; Information processing ; Isotope composition ; Latitude ; Life span ; Marine biology ; marine calcifier ; Marine chemistry ; Marine environment ; Marine organisms ; Mollusks ; Oceans ; Organisms ; Oxygen ; oxygen isotope ; Oxygen isotopes ; Paleoceanography ; proxy system model ; Rainfall ; Seawater ; seawater salinity ; seawater temperature ; Shellfish ; Shells ; Uncertainty ; Variability ; Water temperature</subject><ispartof>Paleoceanography and paleoclimatology, 2024-12, Vol.39 (12), p.n/a</ispartof><rights>2024. The Author(s).</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1092-c04451983ac739a57049badc03fd54189bb3607633fd08e81e7880c9d562ad7b3</cites><orcidid>0000-0002-6181-1259 ; 0000-0001-6378-9828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2023PA004759$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2023PA004759$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Williams, Branwen</creatorcontrib><creatorcontrib>Thompson, Diane M.</creatorcontrib><creatorcontrib>Cohen, Anne L.</creatorcontrib><creatorcontrib>Mandell, Hannah</creatorcontrib><title>Constraining Uncertainties in Marine Calcifier Oxygen Isotope Values (δ18O ${\boldsymbol{\delta }}^{\mathbf{18}}\mathbf{O}$) Across Latitudes and Kingdoms Using a Proxy System Modeling Framework</title><title>Paleoceanography and paleoclimatology</title><description>Paleoceanographic proxy archives encode information about the marine environment, which can yield key insights into past climate variability. In particular, marine calcifiers' stable oxygen isotopic composition (δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$) tells us about seawater temperature and oxygen isotope composition. Here, we use a proxy system model (PSM) framework to systematically evaluate the drivers of skeletal/shell δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ in three taxa of fast‐growing marine calcifiers (crustose coralline algae, bivalves, and sclerosponges) from disparate locations, including high latitudes and deeper waters. We evaluate the impact of the quality of environmental data, the recording season in which the calcifier might document the environmental variability, and the importance of uncertainties on the PSM. Whereas the overall PSM‐modeled δ18Opseudocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{pseudocarb}}$ captured the measured δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ well at some locations, local environmental variability derived from a reanalysis product and chronological uncertainties limit the ability to effectively model δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ at other locations. Using the PSM approach we highlight the complexity of interpreting δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ as seawater temperature and oxygen isotope composition in these remote locations. Plain Language Summary Marine stony algae, clams, and sponges, form hard skeletons or shells and can live for hundreds of years, making them important recorders of their environment. Chemical measurements of the hard parts of these marine organisms capture changes in seawater temperature and how water cycles between the ocean and atmosphere as rainfall, both of which are changing due to human activities. By measuring the chemistry throughout the lifespan of the organisms, we can understand environmental variability before and since these human pressures. We test a simple model that relates the environmental changes to the chemical composition recorded in the hard parts of these marine organisms across a geographical range of ocean environments. We evaluate the importance of the quality of the environmental data, biological information about the growth of the organism, and uncertainty in the measurement itself on the model's effectiveness. We find that the model performs well at some locations, supporting its applications to these diverse types of marine life from different locations. Key Points Proxy system modeling captures oxygen isotopic composition of marine calcifiers Quality of environmental data, calcifier growth characteristics, and age uncertainties impact model performance Analysis emphasizes the importance of strong environmental signals</description><subject>Algae</subject><subject>Biological effects</subject><subject>Chemical composition</subject><subject>Climate models</subject><subject>Climate variability</subject><subject>Environmental changes</subject><subject>Environmental quality</subject><subject>Human influences</subject><subject>Hydrologic cycle</subject><subject>Hydrological cycle</subject><subject>Information processing</subject><subject>Isotope composition</subject><subject>Latitude</subject><subject>Life span</subject><subject>Marine biology</subject><subject>marine calcifier</subject><subject>Marine chemistry</subject><subject>Marine environment</subject><subject>Marine organisms</subject><subject>Mollusks</subject><subject>Oceans</subject><subject>Organisms</subject><subject>Oxygen</subject><subject>oxygen isotope</subject><subject>Oxygen isotopes</subject><subject>Paleoceanography</subject><subject>proxy system model</subject><subject>Rainfall</subject><subject>Seawater</subject><subject>seawater salinity</subject><subject>seawater temperature</subject><subject>Shellfish</subject><subject>Shells</subject><subject>Uncertainty</subject><subject>Variability</subject><subject>Water temperature</subject><issn>2572-4517</issn><issn>2572-4525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kc9uEzEQxlcIJKrSGw9giR5AamBs78b2MYpaqEi1kSCcIlbetbe47Nqp7ahdRftWvEHvfSYcAogTp_mjn775ZibLXmJ4i4GIdwQIXc4AclaIJ9kRKRiZ5AUpnv7NMXuenYRwAwBY0JwTcZQ9zJ0N0Utjjb1GK9toH1MRjQ7IWHQlvbEazWXXmNZoj8r74VpbdBlcdBuNvshum8jXjz8wL9Hpbl27ToWhT2G3VrqLEo3j1926l_Fb3e4wH8c_eTmevkGzxrsQ0EJGE7cqKUmr0MdkRbk-oFXYm5Jo6d39gD4NIeoeXbmku-9feNnrO-e_v8ietbIL-uR3PM5WF-ef5x8mi_L95Xy2mDQYBJk0kKcbCE5lw6iQBYNc1FI1QFtV5JiLuqZTYFOaauCaY804h0aoYkqkYjU9zl4ddDfe3aa1Y3Xjtt6mkRXFOWeccJgm6uxA_VrN67baeNNLP1QYqv2nqn8_lXB6wO9Mp4f_stVytigJzhmhPwEgrJhu</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Williams, Branwen</creator><creator>Thompson, Diane M.</creator><creator>Cohen, Anne L.</creator><creator>Mandell, Hannah</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-6181-1259</orcidid><orcidid>https://orcid.org/0000-0001-6378-9828</orcidid></search><sort><creationdate>202412</creationdate><title>Constraining Uncertainties in Marine Calcifier Oxygen Isotope Values (δ18O ${\boldsymbol{\delta }}^{\mathbf{18}}\mathbf{O}$) Across Latitudes and Kingdoms Using a Proxy System Modeling Framework</title><author>Williams, Branwen ; Thompson, Diane M. ; Cohen, Anne L. ; Mandell, Hannah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1092-c04451983ac739a57049badc03fd54189bb3607633fd08e81e7880c9d562ad7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algae</topic><topic>Biological effects</topic><topic>Chemical composition</topic><topic>Climate models</topic><topic>Climate variability</topic><topic>Environmental changes</topic><topic>Environmental quality</topic><topic>Human influences</topic><topic>Hydrologic cycle</topic><topic>Hydrological cycle</topic><topic>Information processing</topic><topic>Isotope composition</topic><topic>Latitude</topic><topic>Life span</topic><topic>Marine biology</topic><topic>marine calcifier</topic><topic>Marine chemistry</topic><topic>Marine environment</topic><topic>Marine organisms</topic><topic>Mollusks</topic><topic>Oceans</topic><topic>Organisms</topic><topic>Oxygen</topic><topic>oxygen isotope</topic><topic>Oxygen isotopes</topic><topic>Paleoceanography</topic><topic>proxy system model</topic><topic>Rainfall</topic><topic>Seawater</topic><topic>seawater salinity</topic><topic>seawater temperature</topic><topic>Shellfish</topic><topic>Shells</topic><topic>Uncertainty</topic><topic>Variability</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Branwen</creatorcontrib><creatorcontrib>Thompson, Diane M.</creatorcontrib><creatorcontrib>Cohen, Anne L.</creatorcontrib><creatorcontrib>Mandell, Hannah</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Paleoceanography and paleoclimatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Branwen</au><au>Thompson, Diane M.</au><au>Cohen, Anne L.</au><au>Mandell, Hannah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraining Uncertainties in Marine Calcifier Oxygen Isotope Values (δ18O ${\boldsymbol{\delta }}^{\mathbf{18}}\mathbf{O}$) Across Latitudes and Kingdoms Using a Proxy System Modeling Framework</atitle><jtitle>Paleoceanography and paleoclimatology</jtitle><date>2024-12</date><risdate>2024</risdate><volume>39</volume><issue>12</issue><epage>n/a</epage><issn>2572-4517</issn><eissn>2572-4525</eissn><abstract>Paleoceanographic proxy archives encode information about the marine environment, which can yield key insights into past climate variability. In particular, marine calcifiers' stable oxygen isotopic composition (δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$) tells us about seawater temperature and oxygen isotope composition. Here, we use a proxy system model (PSM) framework to systematically evaluate the drivers of skeletal/shell δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ in three taxa of fast‐growing marine calcifiers (crustose coralline algae, bivalves, and sclerosponges) from disparate locations, including high latitudes and deeper waters. We evaluate the impact of the quality of environmental data, the recording season in which the calcifier might document the environmental variability, and the importance of uncertainties on the PSM. Whereas the overall PSM‐modeled δ18Opseudocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{pseudocarb}}$ captured the measured δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ well at some locations, local environmental variability derived from a reanalysis product and chronological uncertainties limit the ability to effectively model δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ at other locations. Using the PSM approach we highlight the complexity of interpreting δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ as seawater temperature and oxygen isotope composition in these remote locations. Plain Language Summary Marine stony algae, clams, and sponges, form hard skeletons or shells and can live for hundreds of years, making them important recorders of their environment. Chemical measurements of the hard parts of these marine organisms capture changes in seawater temperature and how water cycles between the ocean and atmosphere as rainfall, both of which are changing due to human activities. By measuring the chemistry throughout the lifespan of the organisms, we can understand environmental variability before and since these human pressures. We test a simple model that relates the environmental changes to the chemical composition recorded in the hard parts of these marine organisms across a geographical range of ocean environments. We evaluate the importance of the quality of the environmental data, biological information about the growth of the organism, and uncertainty in the measurement itself on the model's effectiveness. We find that the model performs well at some locations, supporting its applications to these diverse types of marine life from different locations. Key Points Proxy system modeling captures oxygen isotopic composition of marine calcifiers Quality of environmental data, calcifier growth characteristics, and age uncertainties impact model performance Analysis emphasizes the importance of strong environmental signals</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2023PA004759</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-6181-1259</orcidid><orcidid>https://orcid.org/0000-0001-6378-9828</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2572-4517
ispartof Paleoceanography and paleoclimatology, 2024-12, Vol.39 (12), p.n/a
issn 2572-4517
2572-4525
language eng
recordid cdi_proquest_journals_3148782806
source Wiley Online Library Journals Frontfile Complete
subjects Algae
Biological effects
Chemical composition
Climate models
Climate variability
Environmental changes
Environmental quality
Human influences
Hydrologic cycle
Hydrological cycle
Information processing
Isotope composition
Latitude
Life span
Marine biology
marine calcifier
Marine chemistry
Marine environment
Marine organisms
Mollusks
Oceans
Organisms
Oxygen
oxygen isotope
Oxygen isotopes
Paleoceanography
proxy system model
Rainfall
Seawater
seawater salinity
seawater temperature
Shellfish
Shells
Uncertainty
Variability
Water temperature
title Constraining Uncertainties in Marine Calcifier Oxygen Isotope Values (δ18O ${\boldsymbol{\delta }}^{\mathbf{18}}\mathbf{O}$) Across Latitudes and Kingdoms Using a Proxy System Modeling Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraining%20Uncertainties%20in%20Marine%20Calcifier%20Oxygen%20Isotope%20Values%20(%CE%B418O%20$%7B%5Cboldsymbol%7B%5Cdelta%20%7D%7D%5E%7B%5Cmathbf%7B18%7D%7D%5Cmathbf%7BO%7D$)%20Across%20Latitudes%20and%20Kingdoms%20Using%20a%20Proxy%20System%20Modeling%20Framework&rft.jtitle=Paleoceanography%20and%20paleoclimatology&rft.au=Williams,%20Branwen&rft.date=2024-12&rft.volume=39&rft.issue=12&rft.epage=n/a&rft.issn=2572-4517&rft.eissn=2572-4525&rft_id=info:doi/10.1029/2023PA004759&rft_dat=%3Cproquest_cross%3E3148782806%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148782806&rft_id=info:pmid/&rfr_iscdi=true