Constraining Uncertainties in Marine Calcifier Oxygen Isotope Values (δ18O ${\boldsymbol{\delta }}^{\mathbf{18}}\mathbf{O}$) Across Latitudes and Kingdoms Using a Proxy System Modeling Framework
Paleoceanographic proxy archives encode information about the marine environment, which can yield key insights into past climate variability. In particular, marine calcifiers' stable oxygen isotopic composition (δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$) tells us about seawater temp...
Gespeichert in:
Veröffentlicht in: | Paleoceanography and paleoclimatology 2024-12, Vol.39 (12), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Paleoceanography and paleoclimatology |
container_volume | 39 |
creator | Williams, Branwen Thompson, Diane M. Cohen, Anne L. Mandell, Hannah |
description | Paleoceanographic proxy archives encode information about the marine environment, which can yield key insights into past climate variability. In particular, marine calcifiers' stable oxygen isotopic composition (δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$) tells us about seawater temperature and oxygen isotope composition. Here, we use a proxy system model (PSM) framework to systematically evaluate the drivers of skeletal/shell δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ in three taxa of fast‐growing marine calcifiers (crustose coralline algae, bivalves, and sclerosponges) from disparate locations, including high latitudes and deeper waters. We evaluate the impact of the quality of environmental data, the recording season in which the calcifier might document the environmental variability, and the importance of uncertainties on the PSM. Whereas the overall PSM‐modeled δ18Opseudocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{pseudocarb}}$ captured the measured δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ well at some locations, local environmental variability derived from a reanalysis product and chronological uncertainties limit the ability to effectively model δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ at other locations. Using the PSM approach we highlight the complexity of interpreting δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ as seawater temperature and oxygen isotope composition in these remote locations.
Plain Language Summary
Marine stony algae, clams, and sponges, form hard skeletons or shells and can live for hundreds of years, making them important recorders of their environment. Chemical measurements of the hard parts of these marine organisms capture changes in seawater temperature and how water cycles between the ocean and atmosphere as rainfall, both of which are changing due to human activities. By measuring the chemistry throughout the lifespan of the organisms, we can understand environmental variability before and since these human pressures. We test a simple model that relates the environmental changes to the chemical composition recorded in the hard parts of these marine organisms across a geographical range of ocean environments. We evaluate the importance of the quality of the environmental data, biological information about the growth of the organism, and uncertainty in the measurement itself on the model's effectiveness. We find that the model performs well at some locations, supporting |
doi_str_mv | 10.1029/2023PA004759 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3148782806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148782806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1092-c04451983ac739a57049badc03fd54189bb3607633fd08e81e7880c9d562ad7b3</originalsourceid><addsrcrecordid>eNp9kc9uEzEQxlcIJKrSGw9giR5AamBs78b2MYpaqEi1kSCcIlbetbe47Nqp7ahdRftWvEHvfSYcAogTp_mjn775ZibLXmJ4i4GIdwQIXc4AclaIJ9kRKRiZ5AUpnv7NMXuenYRwAwBY0JwTcZQ9zJ0N0Utjjb1GK9toH1MRjQ7IWHQlvbEazWXXmNZoj8r74VpbdBlcdBuNvshum8jXjz8wL9Hpbl27ToWhT2G3VrqLEo3j1926l_Fb3e4wH8c_eTmevkGzxrsQ0EJGE7cqKUmr0MdkRbk-oFXYm5Jo6d39gD4NIeoeXbmku-9feNnrO-e_v8ietbIL-uR3PM5WF-ef5x8mi_L95Xy2mDQYBJk0kKcbCE5lw6iQBYNc1FI1QFtV5JiLuqZTYFOaauCaY804h0aoYkqkYjU9zl4ddDfe3aa1Y3Xjtt6mkRXFOWeccJgm6uxA_VrN67baeNNLP1QYqv2nqn8_lXB6wO9Mp4f_stVytigJzhmhPwEgrJhu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148782806</pqid></control><display><type>article</type><title>Constraining Uncertainties in Marine Calcifier Oxygen Isotope Values (δ18O ${\boldsymbol{\delta }}^{\mathbf{18}}\mathbf{O}$) Across Latitudes and Kingdoms Using a Proxy System Modeling Framework</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Williams, Branwen ; Thompson, Diane M. ; Cohen, Anne L. ; Mandell, Hannah</creator><creatorcontrib>Williams, Branwen ; Thompson, Diane M. ; Cohen, Anne L. ; Mandell, Hannah</creatorcontrib><description>Paleoceanographic proxy archives encode information about the marine environment, which can yield key insights into past climate variability. In particular, marine calcifiers' stable oxygen isotopic composition (δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$) tells us about seawater temperature and oxygen isotope composition. Here, we use a proxy system model (PSM) framework to systematically evaluate the drivers of skeletal/shell δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ in three taxa of fast‐growing marine calcifiers (crustose coralline algae, bivalves, and sclerosponges) from disparate locations, including high latitudes and deeper waters. We evaluate the impact of the quality of environmental data, the recording season in which the calcifier might document the environmental variability, and the importance of uncertainties on the PSM. Whereas the overall PSM‐modeled δ18Opseudocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{pseudocarb}}$ captured the measured δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ well at some locations, local environmental variability derived from a reanalysis product and chronological uncertainties limit the ability to effectively model δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ at other locations. Using the PSM approach we highlight the complexity of interpreting δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ as seawater temperature and oxygen isotope composition in these remote locations.
Plain Language Summary
Marine stony algae, clams, and sponges, form hard skeletons or shells and can live for hundreds of years, making them important recorders of their environment. Chemical measurements of the hard parts of these marine organisms capture changes in seawater temperature and how water cycles between the ocean and atmosphere as rainfall, both of which are changing due to human activities. By measuring the chemistry throughout the lifespan of the organisms, we can understand environmental variability before and since these human pressures. We test a simple model that relates the environmental changes to the chemical composition recorded in the hard parts of these marine organisms across a geographical range of ocean environments. We evaluate the importance of the quality of the environmental data, biological information about the growth of the organism, and uncertainty in the measurement itself on the model's effectiveness. We find that the model performs well at some locations, supporting its applications to these diverse types of marine life from different locations.
Key Points
Proxy system modeling captures oxygen isotopic composition of marine calcifiers
Quality of environmental data, calcifier growth characteristics, and age uncertainties impact model performance
Analysis emphasizes the importance of strong environmental signals</description><identifier>ISSN: 2572-4517</identifier><identifier>EISSN: 2572-4525</identifier><identifier>DOI: 10.1029/2023PA004759</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Algae ; Biological effects ; Chemical composition ; Climate models ; Climate variability ; Environmental changes ; Environmental quality ; Human influences ; Hydrologic cycle ; Hydrological cycle ; Information processing ; Isotope composition ; Latitude ; Life span ; Marine biology ; marine calcifier ; Marine chemistry ; Marine environment ; Marine organisms ; Mollusks ; Oceans ; Organisms ; Oxygen ; oxygen isotope ; Oxygen isotopes ; Paleoceanography ; proxy system model ; Rainfall ; Seawater ; seawater salinity ; seawater temperature ; Shellfish ; Shells ; Uncertainty ; Variability ; Water temperature</subject><ispartof>Paleoceanography and paleoclimatology, 2024-12, Vol.39 (12), p.n/a</ispartof><rights>2024. The Author(s).</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1092-c04451983ac739a57049badc03fd54189bb3607633fd08e81e7880c9d562ad7b3</cites><orcidid>0000-0002-6181-1259 ; 0000-0001-6378-9828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2023PA004759$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2023PA004759$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Williams, Branwen</creatorcontrib><creatorcontrib>Thompson, Diane M.</creatorcontrib><creatorcontrib>Cohen, Anne L.</creatorcontrib><creatorcontrib>Mandell, Hannah</creatorcontrib><title>Constraining Uncertainties in Marine Calcifier Oxygen Isotope Values (δ18O ${\boldsymbol{\delta }}^{\mathbf{18}}\mathbf{O}$) Across Latitudes and Kingdoms Using a Proxy System Modeling Framework</title><title>Paleoceanography and paleoclimatology</title><description>Paleoceanographic proxy archives encode information about the marine environment, which can yield key insights into past climate variability. In particular, marine calcifiers' stable oxygen isotopic composition (δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$) tells us about seawater temperature and oxygen isotope composition. Here, we use a proxy system model (PSM) framework to systematically evaluate the drivers of skeletal/shell δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ in three taxa of fast‐growing marine calcifiers (crustose coralline algae, bivalves, and sclerosponges) from disparate locations, including high latitudes and deeper waters. We evaluate the impact of the quality of environmental data, the recording season in which the calcifier might document the environmental variability, and the importance of uncertainties on the PSM. Whereas the overall PSM‐modeled δ18Opseudocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{pseudocarb}}$ captured the measured δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ well at some locations, local environmental variability derived from a reanalysis product and chronological uncertainties limit the ability to effectively model δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ at other locations. Using the PSM approach we highlight the complexity of interpreting δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ as seawater temperature and oxygen isotope composition in these remote locations.
Plain Language Summary
Marine stony algae, clams, and sponges, form hard skeletons or shells and can live for hundreds of years, making them important recorders of their environment. Chemical measurements of the hard parts of these marine organisms capture changes in seawater temperature and how water cycles between the ocean and atmosphere as rainfall, both of which are changing due to human activities. By measuring the chemistry throughout the lifespan of the organisms, we can understand environmental variability before and since these human pressures. We test a simple model that relates the environmental changes to the chemical composition recorded in the hard parts of these marine organisms across a geographical range of ocean environments. We evaluate the importance of the quality of the environmental data, biological information about the growth of the organism, and uncertainty in the measurement itself on the model's effectiveness. We find that the model performs well at some locations, supporting its applications to these diverse types of marine life from different locations.
Key Points
Proxy system modeling captures oxygen isotopic composition of marine calcifiers
Quality of environmental data, calcifier growth characteristics, and age uncertainties impact model performance
Analysis emphasizes the importance of strong environmental signals</description><subject>Algae</subject><subject>Biological effects</subject><subject>Chemical composition</subject><subject>Climate models</subject><subject>Climate variability</subject><subject>Environmental changes</subject><subject>Environmental quality</subject><subject>Human influences</subject><subject>Hydrologic cycle</subject><subject>Hydrological cycle</subject><subject>Information processing</subject><subject>Isotope composition</subject><subject>Latitude</subject><subject>Life span</subject><subject>Marine biology</subject><subject>marine calcifier</subject><subject>Marine chemistry</subject><subject>Marine environment</subject><subject>Marine organisms</subject><subject>Mollusks</subject><subject>Oceans</subject><subject>Organisms</subject><subject>Oxygen</subject><subject>oxygen isotope</subject><subject>Oxygen isotopes</subject><subject>Paleoceanography</subject><subject>proxy system model</subject><subject>Rainfall</subject><subject>Seawater</subject><subject>seawater salinity</subject><subject>seawater temperature</subject><subject>Shellfish</subject><subject>Shells</subject><subject>Uncertainty</subject><subject>Variability</subject><subject>Water temperature</subject><issn>2572-4517</issn><issn>2572-4525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kc9uEzEQxlcIJKrSGw9giR5AamBs78b2MYpaqEi1kSCcIlbetbe47Nqp7ahdRftWvEHvfSYcAogTp_mjn775ZibLXmJ4i4GIdwQIXc4AclaIJ9kRKRiZ5AUpnv7NMXuenYRwAwBY0JwTcZQ9zJ0N0Utjjb1GK9toH1MRjQ7IWHQlvbEazWXXmNZoj8r74VpbdBlcdBuNvshum8jXjz8wL9Hpbl27ToWhT2G3VrqLEo3j1926l_Fb3e4wH8c_eTmevkGzxrsQ0EJGE7cqKUmr0MdkRbk-oFXYm5Jo6d39gD4NIeoeXbmku-9feNnrO-e_v8ietbIL-uR3PM5WF-ef5x8mi_L95Xy2mDQYBJk0kKcbCE5lw6iQBYNc1FI1QFtV5JiLuqZTYFOaauCaY804h0aoYkqkYjU9zl4ddDfe3aa1Y3Xjtt6mkRXFOWeccJgm6uxA_VrN67baeNNLP1QYqv2nqn8_lXB6wO9Mp4f_stVytigJzhmhPwEgrJhu</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Williams, Branwen</creator><creator>Thompson, Diane M.</creator><creator>Cohen, Anne L.</creator><creator>Mandell, Hannah</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0002-6181-1259</orcidid><orcidid>https://orcid.org/0000-0001-6378-9828</orcidid></search><sort><creationdate>202412</creationdate><title>Constraining Uncertainties in Marine Calcifier Oxygen Isotope Values (δ18O ${\boldsymbol{\delta }}^{\mathbf{18}}\mathbf{O}$) Across Latitudes and Kingdoms Using a Proxy System Modeling Framework</title><author>Williams, Branwen ; Thompson, Diane M. ; Cohen, Anne L. ; Mandell, Hannah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1092-c04451983ac739a57049badc03fd54189bb3607633fd08e81e7880c9d562ad7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algae</topic><topic>Biological effects</topic><topic>Chemical composition</topic><topic>Climate models</topic><topic>Climate variability</topic><topic>Environmental changes</topic><topic>Environmental quality</topic><topic>Human influences</topic><topic>Hydrologic cycle</topic><topic>Hydrological cycle</topic><topic>Information processing</topic><topic>Isotope composition</topic><topic>Latitude</topic><topic>Life span</topic><topic>Marine biology</topic><topic>marine calcifier</topic><topic>Marine chemistry</topic><topic>Marine environment</topic><topic>Marine organisms</topic><topic>Mollusks</topic><topic>Oceans</topic><topic>Organisms</topic><topic>Oxygen</topic><topic>oxygen isotope</topic><topic>Oxygen isotopes</topic><topic>Paleoceanography</topic><topic>proxy system model</topic><topic>Rainfall</topic><topic>Seawater</topic><topic>seawater salinity</topic><topic>seawater temperature</topic><topic>Shellfish</topic><topic>Shells</topic><topic>Uncertainty</topic><topic>Variability</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, Branwen</creatorcontrib><creatorcontrib>Thompson, Diane M.</creatorcontrib><creatorcontrib>Cohen, Anne L.</creatorcontrib><creatorcontrib>Mandell, Hannah</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Paleoceanography and paleoclimatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, Branwen</au><au>Thompson, Diane M.</au><au>Cohen, Anne L.</au><au>Mandell, Hannah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constraining Uncertainties in Marine Calcifier Oxygen Isotope Values (δ18O ${\boldsymbol{\delta }}^{\mathbf{18}}\mathbf{O}$) Across Latitudes and Kingdoms Using a Proxy System Modeling Framework</atitle><jtitle>Paleoceanography and paleoclimatology</jtitle><date>2024-12</date><risdate>2024</risdate><volume>39</volume><issue>12</issue><epage>n/a</epage><issn>2572-4517</issn><eissn>2572-4525</eissn><abstract>Paleoceanographic proxy archives encode information about the marine environment, which can yield key insights into past climate variability. In particular, marine calcifiers' stable oxygen isotopic composition (δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$) tells us about seawater temperature and oxygen isotope composition. Here, we use a proxy system model (PSM) framework to systematically evaluate the drivers of skeletal/shell δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ in three taxa of fast‐growing marine calcifiers (crustose coralline algae, bivalves, and sclerosponges) from disparate locations, including high latitudes and deeper waters. We evaluate the impact of the quality of environmental data, the recording season in which the calcifier might document the environmental variability, and the importance of uncertainties on the PSM. Whereas the overall PSM‐modeled δ18Opseudocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{pseudocarb}}$ captured the measured δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ well at some locations, local environmental variability derived from a reanalysis product and chronological uncertainties limit the ability to effectively model δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ at other locations. Using the PSM approach we highlight the complexity of interpreting δ18Ocarb ${{\delta }^{18}\mathrm{O}}_{\mathrm{carb}}$ as seawater temperature and oxygen isotope composition in these remote locations.
Plain Language Summary
Marine stony algae, clams, and sponges, form hard skeletons or shells and can live for hundreds of years, making them important recorders of their environment. Chemical measurements of the hard parts of these marine organisms capture changes in seawater temperature and how water cycles between the ocean and atmosphere as rainfall, both of which are changing due to human activities. By measuring the chemistry throughout the lifespan of the organisms, we can understand environmental variability before and since these human pressures. We test a simple model that relates the environmental changes to the chemical composition recorded in the hard parts of these marine organisms across a geographical range of ocean environments. We evaluate the importance of the quality of the environmental data, biological information about the growth of the organism, and uncertainty in the measurement itself on the model's effectiveness. We find that the model performs well at some locations, supporting its applications to these diverse types of marine life from different locations.
Key Points
Proxy system modeling captures oxygen isotopic composition of marine calcifiers
Quality of environmental data, calcifier growth characteristics, and age uncertainties impact model performance
Analysis emphasizes the importance of strong environmental signals</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2023PA004759</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-6181-1259</orcidid><orcidid>https://orcid.org/0000-0001-6378-9828</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2572-4517 |
ispartof | Paleoceanography and paleoclimatology, 2024-12, Vol.39 (12), p.n/a |
issn | 2572-4517 2572-4525 |
language | eng |
recordid | cdi_proquest_journals_3148782806 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algae Biological effects Chemical composition Climate models Climate variability Environmental changes Environmental quality Human influences Hydrologic cycle Hydrological cycle Information processing Isotope composition Latitude Life span Marine biology marine calcifier Marine chemistry Marine environment Marine organisms Mollusks Oceans Organisms Oxygen oxygen isotope Oxygen isotopes Paleoceanography proxy system model Rainfall Seawater seawater salinity seawater temperature Shellfish Shells Uncertainty Variability Water temperature |
title | Constraining Uncertainties in Marine Calcifier Oxygen Isotope Values (δ18O ${\boldsymbol{\delta }}^{\mathbf{18}}\mathbf{O}$) Across Latitudes and Kingdoms Using a Proxy System Modeling Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A57%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constraining%20Uncertainties%20in%20Marine%20Calcifier%20Oxygen%20Isotope%20Values%20(%CE%B418O%20$%7B%5Cboldsymbol%7B%5Cdelta%20%7D%7D%5E%7B%5Cmathbf%7B18%7D%7D%5Cmathbf%7BO%7D$)%20Across%20Latitudes%20and%20Kingdoms%20Using%20a%20Proxy%20System%20Modeling%20Framework&rft.jtitle=Paleoceanography%20and%20paleoclimatology&rft.au=Williams,%20Branwen&rft.date=2024-12&rft.volume=39&rft.issue=12&rft.epage=n/a&rft.issn=2572-4517&rft.eissn=2572-4525&rft_id=info:doi/10.1029/2023PA004759&rft_dat=%3Cproquest_cross%3E3148782806%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148782806&rft_id=info:pmid/&rfr_iscdi=true |