Machine Learning and Theoretical Prediction of Highly Spin‐Polarized Cr2COx MXene with Enhanced Curie Temperature

2D magnetic materials with high spin polarization and Curie temperature are highly desirable for ultrathin spintronic devices. This study utilizes first‐principles methods to systematically investigate 225 O adsorption configurations, demonstrating that Cr2COx MXene consistently maintains a long‐ran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-12, Vol.34 (52), p.n/a
Hauptverfasser: Yang, Jianhui, shi, Fei, Zhou, Cheng, Zhang, Shaozheng, Sui, Qiao, Chen, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 52
container_start_page
container_title Advanced functional materials
container_volume 34
creator Yang, Jianhui
shi, Fei
Zhou, Cheng
Zhang, Shaozheng
Sui, Qiao
Chen, Liang
description 2D magnetic materials with high spin polarization and Curie temperature are highly desirable for ultrathin spintronic devices. This study utilizes first‐principles methods to systematically investigate 225 O adsorption configurations, demonstrating that Cr2COx MXene consistently maintains a long‐range‐ordered ferromagnetic arrangement with high spin polarization, irrespective of the O adsorption configuration. Most configurations also display Curie temperature (TC) exceeding room temperature, with the possibility of further enhancement by reducing O coverage. Machine learning models are developed to accurately predict O adsorption configurations, exchange interaction energies, and TC. A novel approach of stripping F and OH groups to create Cr2COx on Cr‐based MXene surfaces is proposed to address the difficulty in achieving long‐range‐ordered magnetic structures by manipulating surface adsorbates in MXene. This approach enhances the ability to control the magnetic properties of MXenes and paves the way for their application in ultrathin spintronic devices. 2D magnetic materials with high spin polarization and Curie temperature are ideal for ultrathin spintronic devices. This study, integrating first‐principles calculations with machine learning methods, demonstrates that Cr2COx MXene consistently exhibits high spin polarization and elevated Curie temperatures across various O adsorption configurations. These findings highlight Cr2COx MXene as a promising candidate for advanced ultrathin spintronic applications.
doi_str_mv 10.1002/adfm.202411170
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3148683252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148683252</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1630-4d738bba287bad447f2856d28ee7904e948f91b250ed17fa9df6951467c7baf3</originalsourceid><addsrcrecordid>eNo9kM9PwjAUxxejiYhePTfxPGy7bt2OZIKYQCBxB25Nt76yktHNbgTx5J_g3-hf4giG03sv7_sj-XjeI8EjgjF9lkrvRhRTRgjh-MobkIhEfoBpfH3ZyfrWu2vbLcaE84ANvHYhi9JYQHOQzhq7QdIqlJVQO-hMISu0cqBM0ZnaolqjmdmU1RG9N8b-fv-s6ko68wUKpY6my0-0WEOfdTBdiSa2lLY4vfbOAMpg14CT3d7BvXejZdXCw_8cetl0kqUzf758fUvHc78hUYB9pngQ57mkMc-lYoxrGoeRojEATzCDhMU6ITkNMSjCtUyUjpKQsIgXvUEHQ-_pHNu4-mMPbSe29d7ZvlEEhMVRHNCQ9qrkrDqYCo6icWYn3VEQLE5QxQmquEAV45fp4nIFf48DbuI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148683252</pqid></control><display><type>article</type><title>Machine Learning and Theoretical Prediction of Highly Spin‐Polarized Cr2COx MXene with Enhanced Curie Temperature</title><source>Wiley Online Library All Journals</source><creator>Yang, Jianhui ; shi, Fei ; Zhou, Cheng ; Zhang, Shaozheng ; Sui, Qiao ; Chen, Liang</creator><creatorcontrib>Yang, Jianhui ; shi, Fei ; Zhou, Cheng ; Zhang, Shaozheng ; Sui, Qiao ; Chen, Liang</creatorcontrib><description>2D magnetic materials with high spin polarization and Curie temperature are highly desirable for ultrathin spintronic devices. This study utilizes first‐principles methods to systematically investigate 225 O adsorption configurations, demonstrating that Cr2COx MXene consistently maintains a long‐range‐ordered ferromagnetic arrangement with high spin polarization, irrespective of the O adsorption configuration. Most configurations also display Curie temperature (TC) exceeding room temperature, with the possibility of further enhancement by reducing O coverage. Machine learning models are developed to accurately predict O adsorption configurations, exchange interaction energies, and TC. A novel approach of stripping F and OH groups to create Cr2COx on Cr‐based MXene surfaces is proposed to address the difficulty in achieving long‐range‐ordered magnetic structures by manipulating surface adsorbates in MXene. This approach enhances the ability to control the magnetic properties of MXenes and paves the way for their application in ultrathin spintronic devices. 2D magnetic materials with high spin polarization and Curie temperature are ideal for ultrathin spintronic devices. This study, integrating first‐principles calculations with machine learning methods, demonstrates that Cr2COx MXene consistently exhibits high spin polarization and elevated Curie temperatures across various O adsorption configurations. These findings highlight Cr2COx MXene as a promising candidate for advanced ultrathin spintronic applications.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202411170</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>2D magnetic materials ; Adsorption ; Configurations ; Curie temperature ; Ferromagnetic materials ; First principles ; Machine learning ; Magnetic materials ; Magnetic properties ; MXene ; MXenes ; Polarization (spin alignment) ; Room temperature</subject><ispartof>Advanced functional materials, 2024-12, Vol.34 (52), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7916-3272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202411170$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202411170$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Yang, Jianhui</creatorcontrib><creatorcontrib>shi, Fei</creatorcontrib><creatorcontrib>Zhou, Cheng</creatorcontrib><creatorcontrib>Zhang, Shaozheng</creatorcontrib><creatorcontrib>Sui, Qiao</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><title>Machine Learning and Theoretical Prediction of Highly Spin‐Polarized Cr2COx MXene with Enhanced Curie Temperature</title><title>Advanced functional materials</title><description>2D magnetic materials with high spin polarization and Curie temperature are highly desirable for ultrathin spintronic devices. This study utilizes first‐principles methods to systematically investigate 225 O adsorption configurations, demonstrating that Cr2COx MXene consistently maintains a long‐range‐ordered ferromagnetic arrangement with high spin polarization, irrespective of the O adsorption configuration. Most configurations also display Curie temperature (TC) exceeding room temperature, with the possibility of further enhancement by reducing O coverage. Machine learning models are developed to accurately predict O adsorption configurations, exchange interaction energies, and TC. A novel approach of stripping F and OH groups to create Cr2COx on Cr‐based MXene surfaces is proposed to address the difficulty in achieving long‐range‐ordered magnetic structures by manipulating surface adsorbates in MXene. This approach enhances the ability to control the magnetic properties of MXenes and paves the way for their application in ultrathin spintronic devices. 2D magnetic materials with high spin polarization and Curie temperature are ideal for ultrathin spintronic devices. This study, integrating first‐principles calculations with machine learning methods, demonstrates that Cr2COx MXene consistently exhibits high spin polarization and elevated Curie temperatures across various O adsorption configurations. These findings highlight Cr2COx MXene as a promising candidate for advanced ultrathin spintronic applications.</description><subject>2D magnetic materials</subject><subject>Adsorption</subject><subject>Configurations</subject><subject>Curie temperature</subject><subject>Ferromagnetic materials</subject><subject>First principles</subject><subject>Machine learning</subject><subject>Magnetic materials</subject><subject>Magnetic properties</subject><subject>MXene</subject><subject>MXenes</subject><subject>Polarization (spin alignment)</subject><subject>Room temperature</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM9PwjAUxxejiYhePTfxPGy7bt2OZIKYQCBxB25Nt76yktHNbgTx5J_g3-hf4giG03sv7_sj-XjeI8EjgjF9lkrvRhRTRgjh-MobkIhEfoBpfH3ZyfrWu2vbLcaE84ANvHYhi9JYQHOQzhq7QdIqlJVQO-hMISu0cqBM0ZnaolqjmdmU1RG9N8b-fv-s6ko68wUKpY6my0-0WEOfdTBdiSa2lLY4vfbOAMpg14CT3d7BvXejZdXCw_8cetl0kqUzf758fUvHc78hUYB9pngQ57mkMc-lYoxrGoeRojEATzCDhMU6ITkNMSjCtUyUjpKQsIgXvUEHQ-_pHNu4-mMPbSe29d7ZvlEEhMVRHNCQ9qrkrDqYCo6icWYn3VEQLE5QxQmquEAV45fp4nIFf48DbuI</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Yang, Jianhui</creator><creator>shi, Fei</creator><creator>Zhou, Cheng</creator><creator>Zhang, Shaozheng</creator><creator>Sui, Qiao</creator><creator>Chen, Liang</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7916-3272</orcidid></search><sort><creationdate>20241223</creationdate><title>Machine Learning and Theoretical Prediction of Highly Spin‐Polarized Cr2COx MXene with Enhanced Curie Temperature</title><author>Yang, Jianhui ; shi, Fei ; Zhou, Cheng ; Zhang, Shaozheng ; Sui, Qiao ; Chen, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1630-4d738bba287bad447f2856d28ee7904e948f91b250ed17fa9df6951467c7baf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D magnetic materials</topic><topic>Adsorption</topic><topic>Configurations</topic><topic>Curie temperature</topic><topic>Ferromagnetic materials</topic><topic>First principles</topic><topic>Machine learning</topic><topic>Magnetic materials</topic><topic>Magnetic properties</topic><topic>MXene</topic><topic>MXenes</topic><topic>Polarization (spin alignment)</topic><topic>Room temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jianhui</creatorcontrib><creatorcontrib>shi, Fei</creatorcontrib><creatorcontrib>Zhou, Cheng</creatorcontrib><creatorcontrib>Zhang, Shaozheng</creatorcontrib><creatorcontrib>Sui, Qiao</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jianhui</au><au>shi, Fei</au><au>Zhou, Cheng</au><au>Zhang, Shaozheng</au><au>Sui, Qiao</au><au>Chen, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning and Theoretical Prediction of Highly Spin‐Polarized Cr2COx MXene with Enhanced Curie Temperature</atitle><jtitle>Advanced functional materials</jtitle><date>2024-12-23</date><risdate>2024</risdate><volume>34</volume><issue>52</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>2D magnetic materials with high spin polarization and Curie temperature are highly desirable for ultrathin spintronic devices. This study utilizes first‐principles methods to systematically investigate 225 O adsorption configurations, demonstrating that Cr2COx MXene consistently maintains a long‐range‐ordered ferromagnetic arrangement with high spin polarization, irrespective of the O adsorption configuration. Most configurations also display Curie temperature (TC) exceeding room temperature, with the possibility of further enhancement by reducing O coverage. Machine learning models are developed to accurately predict O adsorption configurations, exchange interaction energies, and TC. A novel approach of stripping F and OH groups to create Cr2COx on Cr‐based MXene surfaces is proposed to address the difficulty in achieving long‐range‐ordered magnetic structures by manipulating surface adsorbates in MXene. This approach enhances the ability to control the magnetic properties of MXenes and paves the way for their application in ultrathin spintronic devices. 2D magnetic materials with high spin polarization and Curie temperature are ideal for ultrathin spintronic devices. This study, integrating first‐principles calculations with machine learning methods, demonstrates that Cr2COx MXene consistently exhibits high spin polarization and elevated Curie temperatures across various O adsorption configurations. These findings highlight Cr2COx MXene as a promising candidate for advanced ultrathin spintronic applications.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202411170</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7916-3272</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-12, Vol.34 (52), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3148683252
source Wiley Online Library All Journals
subjects 2D magnetic materials
Adsorption
Configurations
Curie temperature
Ferromagnetic materials
First principles
Machine learning
Magnetic materials
Magnetic properties
MXene
MXenes
Polarization (spin alignment)
Room temperature
title Machine Learning and Theoretical Prediction of Highly Spin‐Polarized Cr2COx MXene with Enhanced Curie Temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20and%20Theoretical%20Prediction%20of%20Highly%20Spin%E2%80%90Polarized%20Cr2COx%20MXene%20with%20Enhanced%20Curie%20Temperature&rft.jtitle=Advanced%20functional%20materials&rft.au=Yang,%20Jianhui&rft.date=2024-12-23&rft.volume=34&rft.issue=52&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202411170&rft_dat=%3Cproquest_wiley%3E3148683252%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148683252&rft_id=info:pmid/&rfr_iscdi=true