Machine Learning and Theoretical Prediction of Highly Spin‐Polarized Cr2COx MXene with Enhanced Curie Temperature
2D magnetic materials with high spin polarization and Curie temperature are highly desirable for ultrathin spintronic devices. This study utilizes first‐principles methods to systematically investigate 225 O adsorption configurations, demonstrating that Cr2COx MXene consistently maintains a long‐ran...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-12, Vol.34 (52), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 52 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Yang, Jianhui shi, Fei Zhou, Cheng Zhang, Shaozheng Sui, Qiao Chen, Liang |
description | 2D magnetic materials with high spin polarization and Curie temperature are highly desirable for ultrathin spintronic devices. This study utilizes first‐principles methods to systematically investigate 225 O adsorption configurations, demonstrating that Cr2COx MXene consistently maintains a long‐range‐ordered ferromagnetic arrangement with high spin polarization, irrespective of the O adsorption configuration. Most configurations also display Curie temperature (TC) exceeding room temperature, with the possibility of further enhancement by reducing O coverage. Machine learning models are developed to accurately predict O adsorption configurations, exchange interaction energies, and TC. A novel approach of stripping F and OH groups to create Cr2COx on Cr‐based MXene surfaces is proposed to address the difficulty in achieving long‐range‐ordered magnetic structures by manipulating surface adsorbates in MXene. This approach enhances the ability to control the magnetic properties of MXenes and paves the way for their application in ultrathin spintronic devices.
2D magnetic materials with high spin polarization and Curie temperature are ideal for ultrathin spintronic devices. This study, integrating first‐principles calculations with machine learning methods, demonstrates that Cr2COx MXene consistently exhibits high spin polarization and elevated Curie temperatures across various O adsorption configurations. These findings highlight Cr2COx MXene as a promising candidate for advanced ultrathin spintronic applications. |
doi_str_mv | 10.1002/adfm.202411170 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3148683252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148683252</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1630-4d738bba287bad447f2856d28ee7904e948f91b250ed17fa9df6951467c7baf3</originalsourceid><addsrcrecordid>eNo9kM9PwjAUxxejiYhePTfxPGy7bt2OZIKYQCBxB25Nt76yktHNbgTx5J_g3-hf4giG03sv7_sj-XjeI8EjgjF9lkrvRhRTRgjh-MobkIhEfoBpfH3ZyfrWu2vbLcaE84ANvHYhi9JYQHOQzhq7QdIqlJVQO-hMISu0cqBM0ZnaolqjmdmU1RG9N8b-fv-s6ko68wUKpY6my0-0WEOfdTBdiSa2lLY4vfbOAMpg14CT3d7BvXejZdXCw_8cetl0kqUzf758fUvHc78hUYB9pngQ57mkMc-lYoxrGoeRojEATzCDhMU6ITkNMSjCtUyUjpKQsIgXvUEHQ-_pHNu4-mMPbSe29d7ZvlEEhMVRHNCQ9qrkrDqYCo6icWYn3VEQLE5QxQmquEAV45fp4nIFf48DbuI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148683252</pqid></control><display><type>article</type><title>Machine Learning and Theoretical Prediction of Highly Spin‐Polarized Cr2COx MXene with Enhanced Curie Temperature</title><source>Wiley Online Library All Journals</source><creator>Yang, Jianhui ; shi, Fei ; Zhou, Cheng ; Zhang, Shaozheng ; Sui, Qiao ; Chen, Liang</creator><creatorcontrib>Yang, Jianhui ; shi, Fei ; Zhou, Cheng ; Zhang, Shaozheng ; Sui, Qiao ; Chen, Liang</creatorcontrib><description>2D magnetic materials with high spin polarization and Curie temperature are highly desirable for ultrathin spintronic devices. This study utilizes first‐principles methods to systematically investigate 225 O adsorption configurations, demonstrating that Cr2COx MXene consistently maintains a long‐range‐ordered ferromagnetic arrangement with high spin polarization, irrespective of the O adsorption configuration. Most configurations also display Curie temperature (TC) exceeding room temperature, with the possibility of further enhancement by reducing O coverage. Machine learning models are developed to accurately predict O adsorption configurations, exchange interaction energies, and TC. A novel approach of stripping F and OH groups to create Cr2COx on Cr‐based MXene surfaces is proposed to address the difficulty in achieving long‐range‐ordered magnetic structures by manipulating surface adsorbates in MXene. This approach enhances the ability to control the magnetic properties of MXenes and paves the way for their application in ultrathin spintronic devices.
2D magnetic materials with high spin polarization and Curie temperature are ideal for ultrathin spintronic devices. This study, integrating first‐principles calculations with machine learning methods, demonstrates that Cr2COx MXene consistently exhibits high spin polarization and elevated Curie temperatures across various O adsorption configurations. These findings highlight Cr2COx MXene as a promising candidate for advanced ultrathin spintronic applications.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202411170</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>2D magnetic materials ; Adsorption ; Configurations ; Curie temperature ; Ferromagnetic materials ; First principles ; Machine learning ; Magnetic materials ; Magnetic properties ; MXene ; MXenes ; Polarization (spin alignment) ; Room temperature</subject><ispartof>Advanced functional materials, 2024-12, Vol.34 (52), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7916-3272</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202411170$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202411170$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Yang, Jianhui</creatorcontrib><creatorcontrib>shi, Fei</creatorcontrib><creatorcontrib>Zhou, Cheng</creatorcontrib><creatorcontrib>Zhang, Shaozheng</creatorcontrib><creatorcontrib>Sui, Qiao</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><title>Machine Learning and Theoretical Prediction of Highly Spin‐Polarized Cr2COx MXene with Enhanced Curie Temperature</title><title>Advanced functional materials</title><description>2D magnetic materials with high spin polarization and Curie temperature are highly desirable for ultrathin spintronic devices. This study utilizes first‐principles methods to systematically investigate 225 O adsorption configurations, demonstrating that Cr2COx MXene consistently maintains a long‐range‐ordered ferromagnetic arrangement with high spin polarization, irrespective of the O adsorption configuration. Most configurations also display Curie temperature (TC) exceeding room temperature, with the possibility of further enhancement by reducing O coverage. Machine learning models are developed to accurately predict O adsorption configurations, exchange interaction energies, and TC. A novel approach of stripping F and OH groups to create Cr2COx on Cr‐based MXene surfaces is proposed to address the difficulty in achieving long‐range‐ordered magnetic structures by manipulating surface adsorbates in MXene. This approach enhances the ability to control the magnetic properties of MXenes and paves the way for their application in ultrathin spintronic devices.
2D magnetic materials with high spin polarization and Curie temperature are ideal for ultrathin spintronic devices. This study, integrating first‐principles calculations with machine learning methods, demonstrates that Cr2COx MXene consistently exhibits high spin polarization and elevated Curie temperatures across various O adsorption configurations. These findings highlight Cr2COx MXene as a promising candidate for advanced ultrathin spintronic applications.</description><subject>2D magnetic materials</subject><subject>Adsorption</subject><subject>Configurations</subject><subject>Curie temperature</subject><subject>Ferromagnetic materials</subject><subject>First principles</subject><subject>Machine learning</subject><subject>Magnetic materials</subject><subject>Magnetic properties</subject><subject>MXene</subject><subject>MXenes</subject><subject>Polarization (spin alignment)</subject><subject>Room temperature</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kM9PwjAUxxejiYhePTfxPGy7bt2OZIKYQCBxB25Nt76yktHNbgTx5J_g3-hf4giG03sv7_sj-XjeI8EjgjF9lkrvRhRTRgjh-MobkIhEfoBpfH3ZyfrWu2vbLcaE84ANvHYhi9JYQHOQzhq7QdIqlJVQO-hMISu0cqBM0ZnaolqjmdmU1RG9N8b-fv-s6ko68wUKpY6my0-0WEOfdTBdiSa2lLY4vfbOAMpg14CT3d7BvXejZdXCw_8cetl0kqUzf758fUvHc78hUYB9pngQ57mkMc-lYoxrGoeRojEATzCDhMU6ITkNMSjCtUyUjpKQsIgXvUEHQ-_pHNu4-mMPbSe29d7ZvlEEhMVRHNCQ9qrkrDqYCo6icWYn3VEQLE5QxQmquEAV45fp4nIFf48DbuI</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Yang, Jianhui</creator><creator>shi, Fei</creator><creator>Zhou, Cheng</creator><creator>Zhang, Shaozheng</creator><creator>Sui, Qiao</creator><creator>Chen, Liang</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7916-3272</orcidid></search><sort><creationdate>20241223</creationdate><title>Machine Learning and Theoretical Prediction of Highly Spin‐Polarized Cr2COx MXene with Enhanced Curie Temperature</title><author>Yang, Jianhui ; shi, Fei ; Zhou, Cheng ; Zhang, Shaozheng ; Sui, Qiao ; Chen, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1630-4d738bba287bad447f2856d28ee7904e948f91b250ed17fa9df6951467c7baf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2D magnetic materials</topic><topic>Adsorption</topic><topic>Configurations</topic><topic>Curie temperature</topic><topic>Ferromagnetic materials</topic><topic>First principles</topic><topic>Machine learning</topic><topic>Magnetic materials</topic><topic>Magnetic properties</topic><topic>MXene</topic><topic>MXenes</topic><topic>Polarization (spin alignment)</topic><topic>Room temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jianhui</creatorcontrib><creatorcontrib>shi, Fei</creatorcontrib><creatorcontrib>Zhou, Cheng</creatorcontrib><creatorcontrib>Zhang, Shaozheng</creatorcontrib><creatorcontrib>Sui, Qiao</creatorcontrib><creatorcontrib>Chen, Liang</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jianhui</au><au>shi, Fei</au><au>Zhou, Cheng</au><au>Zhang, Shaozheng</au><au>Sui, Qiao</au><au>Chen, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning and Theoretical Prediction of Highly Spin‐Polarized Cr2COx MXene with Enhanced Curie Temperature</atitle><jtitle>Advanced functional materials</jtitle><date>2024-12-23</date><risdate>2024</risdate><volume>34</volume><issue>52</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>2D magnetic materials with high spin polarization and Curie temperature are highly desirable for ultrathin spintronic devices. This study utilizes first‐principles methods to systematically investigate 225 O adsorption configurations, demonstrating that Cr2COx MXene consistently maintains a long‐range‐ordered ferromagnetic arrangement with high spin polarization, irrespective of the O adsorption configuration. Most configurations also display Curie temperature (TC) exceeding room temperature, with the possibility of further enhancement by reducing O coverage. Machine learning models are developed to accurately predict O adsorption configurations, exchange interaction energies, and TC. A novel approach of stripping F and OH groups to create Cr2COx on Cr‐based MXene surfaces is proposed to address the difficulty in achieving long‐range‐ordered magnetic structures by manipulating surface adsorbates in MXene. This approach enhances the ability to control the magnetic properties of MXenes and paves the way for their application in ultrathin spintronic devices.
2D magnetic materials with high spin polarization and Curie temperature are ideal for ultrathin spintronic devices. This study, integrating first‐principles calculations with machine learning methods, demonstrates that Cr2COx MXene consistently exhibits high spin polarization and elevated Curie temperatures across various O adsorption configurations. These findings highlight Cr2COx MXene as a promising candidate for advanced ultrathin spintronic applications.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202411170</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7916-3272</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-12, Vol.34 (52), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_3148683252 |
source | Wiley Online Library All Journals |
subjects | 2D magnetic materials Adsorption Configurations Curie temperature Ferromagnetic materials First principles Machine learning Magnetic materials Magnetic properties MXene MXenes Polarization (spin alignment) Room temperature |
title | Machine Learning and Theoretical Prediction of Highly Spin‐Polarized Cr2COx MXene with Enhanced Curie Temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20and%20Theoretical%20Prediction%20of%20Highly%20Spin%E2%80%90Polarized%20Cr2COx%20MXene%20with%20Enhanced%20Curie%20Temperature&rft.jtitle=Advanced%20functional%20materials&rft.au=Yang,%20Jianhui&rft.date=2024-12-23&rft.volume=34&rft.issue=52&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202411170&rft_dat=%3Cproquest_wiley%3E3148683252%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148683252&rft_id=info:pmid/&rfr_iscdi=true |