Versatile Ultrahigh‐Output Bilayer Hydrogel for Electricity Generation and Passive Cooling

The gradient concentration in nature has garnered significant attention as a promising source for energy harvesting. Researchers have explored various methods to harness electricity from gradient‐concentration‐induced flows, including evaporation‐driven nanogenerators and humidity‐gradient‐based pow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-09, Vol.34 (52), p.n/a
Hauptverfasser: Chen, Guopeng, Xie, Shangzhen, Xiang, Kang, Wu, Huangying, Lv, Song, Jiang, Xingchi, Guo, Zhiguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 52
container_start_page
container_title Advanced functional materials
container_volume 34
creator Chen, Guopeng
Xie, Shangzhen
Xiang, Kang
Wu, Huangying
Lv, Song
Jiang, Xingchi
Guo, Zhiguang
description The gradient concentration in nature has garnered significant attention as a promising source for energy harvesting. Researchers have explored various methods to harness electricity from gradient‐concentration‐induced flows, including evaporation‐driven nanogenerators and humidity‐gradient‐based power generators. However, their low current and power density are the main obstacles toward practical applications. Herein, a Bilayer Hydrogel Electricity Generator (BHEG) is presented to enable efficient energy harvesting through the synergy between ion gradient concentration and galvanic effects. A BHEG unit employing identical materials for both electrodes demonstrates an open‐circuit voltage of 0.7 V and a short‐circuit current of 4.34 mA—surpassing the currently reported average by over 73 times—and achieves a maximum power density of 72.2 mW m−2. Moreover, another BHEG unit using Zn─C electrode materials exhibit an open‐circuit voltage of 1.86 V and a short‐circuit current of 92 mA. Furthermore, the versatility of the BHEG extends beyond power generation, effectively providing passive thermal management for electronics, resulting in a maximum temperature reduction of ≈20 °C. Consequently, the study contributes insights into the design and fabrication of efficient hydrogel‐based power generators, providing a promising avenue for leveraging natural‐flow‐induced energy for various applications. A novel multifunctional bilayer hydrogel has been developed, which utilizes the ion concentration difference and ionization effect between the bilayer hydrogels to successfully achieve stable electrical energy output. At the same time, this hydrogel can also fully use the abundant water molecules within it for effective passive cooling. As a result, this device possesses multiple functions and exhibits excellent application performance in relatively particular environments.
doi_str_mv 10.1002/adfm.202411298
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3148682468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148682468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2028-ddc1b4b25e7dade3878fa8d18f45d60063904fad6a5312eaa2a7271ca6f3ba553</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EEqWwMltiTvFP4rhjKbRFKioDRQxI0W1st67SuNgJKBuPwDPyJKQqKiPTvcN3vnt1ELqkpEcJYdegzKbHCIspZX15hDpUUBFxwuTxYacvp-gshDUhNE153EGvz9oHqGyh8byoPKzscvX9-TWrq21d4RtbQKM9njTKu6UusHEe3xU6r7zNbdXgsS61b3FXYigVfoQQ7LvGQ-cKWy7P0YmBIuiL39lF89Hd03ASTWfj--FgGuXtuzJSKqeLeMESnSpQmstUGpCKShMnShAieJ_EBpSAhFOmARikLKU5CMMXkCS8i672vVvv3modqmztal-2JzNOYykki4VsU719KvcuBK9NtvV2A77JKMl2BrOdwexgsAX6e-Cj1dP8k84Gt6OHP_YHK8t3VA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148682468</pqid></control><display><type>article</type><title>Versatile Ultrahigh‐Output Bilayer Hydrogel for Electricity Generation and Passive Cooling</title><source>Access via Wiley Online Library</source><creator>Chen, Guopeng ; Xie, Shangzhen ; Xiang, Kang ; Wu, Huangying ; Lv, Song ; Jiang, Xingchi ; Guo, Zhiguang</creator><creatorcontrib>Chen, Guopeng ; Xie, Shangzhen ; Xiang, Kang ; Wu, Huangying ; Lv, Song ; Jiang, Xingchi ; Guo, Zhiguang</creatorcontrib><description>The gradient concentration in nature has garnered significant attention as a promising source for energy harvesting. Researchers have explored various methods to harness electricity from gradient‐concentration‐induced flows, including evaporation‐driven nanogenerators and humidity‐gradient‐based power generators. However, their low current and power density are the main obstacles toward practical applications. Herein, a Bilayer Hydrogel Electricity Generator (BHEG) is presented to enable efficient energy harvesting through the synergy between ion gradient concentration and galvanic effects. A BHEG unit employing identical materials for both electrodes demonstrates an open‐circuit voltage of 0.7 V and a short‐circuit current of 4.34 mA—surpassing the currently reported average by over 73 times—and achieves a maximum power density of 72.2 mW m−2. Moreover, another BHEG unit using Zn─C electrode materials exhibit an open‐circuit voltage of 1.86 V and a short‐circuit current of 92 mA. Furthermore, the versatility of the BHEG extends beyond power generation, effectively providing passive thermal management for electronics, resulting in a maximum temperature reduction of ≈20 °C. Consequently, the study contributes insights into the design and fabrication of efficient hydrogel‐based power generators, providing a promising avenue for leveraging natural‐flow‐induced energy for various applications. A novel multifunctional bilayer hydrogel has been developed, which utilizes the ion concentration difference and ionization effect between the bilayer hydrogels to successfully achieve stable electrical energy output. At the same time, this hydrogel can also fully use the abundant water molecules within it for effective passive cooling. As a result, this device possesses multiple functions and exhibits excellent application performance in relatively particular environments.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202411298</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>bilayer hydrogel ; Bilayers ; Concentration gradient ; Electric potential ; Electricity ; electricity generation ; Electrode materials ; Electrodes ; Energy harvesting ; Generators ; gradient concentration ; Hydrogels ; ion diffusion ; Low currents ; Maximum power density ; Nanogenerators ; passive thermal management ; Thermal management ; Voltage</subject><ispartof>Advanced functional materials, 2024-09, Vol.34 (52), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2028-ddc1b4b25e7dade3878fa8d18f45d60063904fad6a5312eaa2a7271ca6f3ba553</cites><orcidid>0000-0002-3006-1109</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202411298$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202411298$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Chen, Guopeng</creatorcontrib><creatorcontrib>Xie, Shangzhen</creatorcontrib><creatorcontrib>Xiang, Kang</creatorcontrib><creatorcontrib>Wu, Huangying</creatorcontrib><creatorcontrib>Lv, Song</creatorcontrib><creatorcontrib>Jiang, Xingchi</creatorcontrib><creatorcontrib>Guo, Zhiguang</creatorcontrib><title>Versatile Ultrahigh‐Output Bilayer Hydrogel for Electricity Generation and Passive Cooling</title><title>Advanced functional materials</title><description>The gradient concentration in nature has garnered significant attention as a promising source for energy harvesting. Researchers have explored various methods to harness electricity from gradient‐concentration‐induced flows, including evaporation‐driven nanogenerators and humidity‐gradient‐based power generators. However, their low current and power density are the main obstacles toward practical applications. Herein, a Bilayer Hydrogel Electricity Generator (BHEG) is presented to enable efficient energy harvesting through the synergy between ion gradient concentration and galvanic effects. A BHEG unit employing identical materials for both electrodes demonstrates an open‐circuit voltage of 0.7 V and a short‐circuit current of 4.34 mA—surpassing the currently reported average by over 73 times—and achieves a maximum power density of 72.2 mW m−2. Moreover, another BHEG unit using Zn─C electrode materials exhibit an open‐circuit voltage of 1.86 V and a short‐circuit current of 92 mA. Furthermore, the versatility of the BHEG extends beyond power generation, effectively providing passive thermal management for electronics, resulting in a maximum temperature reduction of ≈20 °C. Consequently, the study contributes insights into the design and fabrication of efficient hydrogel‐based power generators, providing a promising avenue for leveraging natural‐flow‐induced energy for various applications. A novel multifunctional bilayer hydrogel has been developed, which utilizes the ion concentration difference and ionization effect between the bilayer hydrogels to successfully achieve stable electrical energy output. At the same time, this hydrogel can also fully use the abundant water molecules within it for effective passive cooling. As a result, this device possesses multiple functions and exhibits excellent application performance in relatively particular environments.</description><subject>bilayer hydrogel</subject><subject>Bilayers</subject><subject>Concentration gradient</subject><subject>Electric potential</subject><subject>Electricity</subject><subject>electricity generation</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy harvesting</subject><subject>Generators</subject><subject>gradient concentration</subject><subject>Hydrogels</subject><subject>ion diffusion</subject><subject>Low currents</subject><subject>Maximum power density</subject><subject>Nanogenerators</subject><subject>passive thermal management</subject><subject>Thermal management</subject><subject>Voltage</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EEqWwMltiTvFP4rhjKbRFKioDRQxI0W1st67SuNgJKBuPwDPyJKQqKiPTvcN3vnt1ELqkpEcJYdegzKbHCIspZX15hDpUUBFxwuTxYacvp-gshDUhNE153EGvz9oHqGyh8byoPKzscvX9-TWrq21d4RtbQKM9njTKu6UusHEe3xU6r7zNbdXgsS61b3FXYigVfoQQ7LvGQ-cKWy7P0YmBIuiL39lF89Hd03ASTWfj--FgGuXtuzJSKqeLeMESnSpQmstUGpCKShMnShAieJ_EBpSAhFOmARikLKU5CMMXkCS8i672vVvv3modqmztal-2JzNOYykki4VsU719KvcuBK9NtvV2A77JKMl2BrOdwexgsAX6e-Cj1dP8k84Gt6OHP_YHK8t3VA</recordid><startdate>20240923</startdate><enddate>20240923</enddate><creator>Chen, Guopeng</creator><creator>Xie, Shangzhen</creator><creator>Xiang, Kang</creator><creator>Wu, Huangying</creator><creator>Lv, Song</creator><creator>Jiang, Xingchi</creator><creator>Guo, Zhiguang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3006-1109</orcidid></search><sort><creationdate>20240923</creationdate><title>Versatile Ultrahigh‐Output Bilayer Hydrogel for Electricity Generation and Passive Cooling</title><author>Chen, Guopeng ; Xie, Shangzhen ; Xiang, Kang ; Wu, Huangying ; Lv, Song ; Jiang, Xingchi ; Guo, Zhiguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2028-ddc1b4b25e7dade3878fa8d18f45d60063904fad6a5312eaa2a7271ca6f3ba553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>bilayer hydrogel</topic><topic>Bilayers</topic><topic>Concentration gradient</topic><topic>Electric potential</topic><topic>Electricity</topic><topic>electricity generation</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy harvesting</topic><topic>Generators</topic><topic>gradient concentration</topic><topic>Hydrogels</topic><topic>ion diffusion</topic><topic>Low currents</topic><topic>Maximum power density</topic><topic>Nanogenerators</topic><topic>passive thermal management</topic><topic>Thermal management</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Guopeng</creatorcontrib><creatorcontrib>Xie, Shangzhen</creatorcontrib><creatorcontrib>Xiang, Kang</creatorcontrib><creatorcontrib>Wu, Huangying</creatorcontrib><creatorcontrib>Lv, Song</creatorcontrib><creatorcontrib>Jiang, Xingchi</creatorcontrib><creatorcontrib>Guo, Zhiguang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Guopeng</au><au>Xie, Shangzhen</au><au>Xiang, Kang</au><au>Wu, Huangying</au><au>Lv, Song</au><au>Jiang, Xingchi</au><au>Guo, Zhiguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Versatile Ultrahigh‐Output Bilayer Hydrogel for Electricity Generation and Passive Cooling</atitle><jtitle>Advanced functional materials</jtitle><date>2024-09-23</date><risdate>2024</risdate><volume>34</volume><issue>52</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The gradient concentration in nature has garnered significant attention as a promising source for energy harvesting. Researchers have explored various methods to harness electricity from gradient‐concentration‐induced flows, including evaporation‐driven nanogenerators and humidity‐gradient‐based power generators. However, their low current and power density are the main obstacles toward practical applications. Herein, a Bilayer Hydrogel Electricity Generator (BHEG) is presented to enable efficient energy harvesting through the synergy between ion gradient concentration and galvanic effects. A BHEG unit employing identical materials for both electrodes demonstrates an open‐circuit voltage of 0.7 V and a short‐circuit current of 4.34 mA—surpassing the currently reported average by over 73 times—and achieves a maximum power density of 72.2 mW m−2. Moreover, another BHEG unit using Zn─C electrode materials exhibit an open‐circuit voltage of 1.86 V and a short‐circuit current of 92 mA. Furthermore, the versatility of the BHEG extends beyond power generation, effectively providing passive thermal management for electronics, resulting in a maximum temperature reduction of ≈20 °C. Consequently, the study contributes insights into the design and fabrication of efficient hydrogel‐based power generators, providing a promising avenue for leveraging natural‐flow‐induced energy for various applications. A novel multifunctional bilayer hydrogel has been developed, which utilizes the ion concentration difference and ionization effect between the bilayer hydrogels to successfully achieve stable electrical energy output. At the same time, this hydrogel can also fully use the abundant water molecules within it for effective passive cooling. As a result, this device possesses multiple functions and exhibits excellent application performance in relatively particular environments.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202411298</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3006-1109</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-09, Vol.34 (52), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3148682468
source Access via Wiley Online Library
subjects bilayer hydrogel
Bilayers
Concentration gradient
Electric potential
Electricity
electricity generation
Electrode materials
Electrodes
Energy harvesting
Generators
gradient concentration
Hydrogels
ion diffusion
Low currents
Maximum power density
Nanogenerators
passive thermal management
Thermal management
Voltage
title Versatile Ultrahigh‐Output Bilayer Hydrogel for Electricity Generation and Passive Cooling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Versatile%20Ultrahigh%E2%80%90Output%20Bilayer%20Hydrogel%20for%20Electricity%20Generation%20and%20Passive%20Cooling&rft.jtitle=Advanced%20functional%20materials&rft.au=Chen,%20Guopeng&rft.date=2024-09-23&rft.volume=34&rft.issue=52&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202411298&rft_dat=%3Cproquest_cross%3E3148682468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148682468&rft_id=info:pmid/&rfr_iscdi=true