Hierarchical Ceramic Nanofibrous Aerogels for Universal Passive Radiative Cooling

Solar‐induced thermal challenges in buildings, cold chain logistics, and spacecrafts may be overcome by integrating passive radiative cooling (PRC) with aerogels having thermal insulation (TI). Herein, a universal radiative cooling silica aerogel (UCSA) is prepared through the simple regeneration an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2024-12, Vol.34 (52), p.n/a
Hauptverfasser: Lan, Pin‐Hui, Hwang, Ching‐Wen, Chen, Tai‐Chi, Wang, Tzu‐Wei, Chen, Hsuen‐Li, Wan, Dehui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 52
container_start_page
container_title Advanced functional materials
container_volume 34
creator Lan, Pin‐Hui
Hwang, Ching‐Wen
Chen, Tai‐Chi
Wang, Tzu‐Wei
Chen, Hsuen‐Li
Wan, Dehui
description Solar‐induced thermal challenges in buildings, cold chain logistics, and spacecrafts may be overcome by integrating passive radiative cooling (PRC) with aerogels having thermal insulation (TI). Herein, a universal radiative cooling silica aerogel (UCSA) is prepared through the simple regeneration and freeze‐drying of commercial quartz fiber membranes. The optically engineered UCSA with a hybrid structure (silica nanofibers/microbeads) achieves remarkable solar reflectance (RS.E. = 98.1%) and atmospheric transparency window emittance (εATW = 92.1%) under Earth conditions, with a theoretical daytime cooling power of 103.3 W m−2. In the harsh space environment, it exhibits ultrahigh average solar reflectance (RS.E. = 99.1%) and broadband mid‐infrared emittance (εMIR = 90%), achieving a cooling power of 354.1 W m−2. Compared to single‐functional approaches, UCSA synergistically integrates the PRC and TI performance for excellent thermal management capability. Moreover, this ceramic aerogel can resist temperatures up to 830 °C, safeguarding building occupants and spacecraft electronics. Furthermore, UCSA passes environmental aging and thermal vacuum outgassing tests for long‐term viability both on Earth and in space. Finally, a USCA‐covered box achieves an average sub‐ambient cooling of 18.6 °C when exposed to sunlight. In summary, UCSA opens a path for energy‐efficient and sustainable cooling strategy with universal applications. A universal radiative cooling silica nanofibrous aerogel (UCSA) is developed, combining exceptionally high solar reflectivity, mid‐infrared emissivity, and thermal insulation. UCSA provides efficient thermal management for buildings, cold chain logistics, and spacecrafts without energy consumption. It also exhibits high‐temperature resilience and environmental durability, offering a sustainable cooling strategy for diverse terrestrial and extraterrestrial applications.
doi_str_mv 10.1002/adfm.202410285
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3148681665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148681665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2425-ca0aee9c00a9d17837bd026c32dbeb92c83027b09e35b65e14669e0d3a58d7303</originalsourceid><addsrcrecordid>eNqFkM9LwzAUx4MoOKdXzwXPnS9Jm7bHUZ0T5k8ceAtp-jozumYmq7L_3ozJPHrKJ_D5vvf4EnJJYUQB2LWqm9WIAUsosDw9IgMqqIh5-BwfmL6fkjPvlwA0y3gyIC9Tg045_WG0aqMy8Mro6FF1tjGVs72PxujsAlsfNdZF8858ofNBfVbeB45eVW3UZkelta3pFufkpFGtx4vfd0jmk9u3chrPnu7uy_Es1ixhaawVKMRCA6iiplnOs6oGJjRndYVVwXQeLs8qKJCnlUiRJkIUCDVXaV5nHPiQXO3nrp397NFv5NL2rgsrJadJLnIqRBqs0d7SznrvsJFrZ1bKbSUFuatN7mqTh9pCoNgHvk2L239sOb6ZPPxlfwAm63Ez</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148681665</pqid></control><display><type>article</type><title>Hierarchical Ceramic Nanofibrous Aerogels for Universal Passive Radiative Cooling</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lan, Pin‐Hui ; Hwang, Ching‐Wen ; Chen, Tai‐Chi ; Wang, Tzu‐Wei ; Chen, Hsuen‐Li ; Wan, Dehui</creator><creatorcontrib>Lan, Pin‐Hui ; Hwang, Ching‐Wen ; Chen, Tai‐Chi ; Wang, Tzu‐Wei ; Chen, Hsuen‐Li ; Wan, Dehui</creatorcontrib><description>Solar‐induced thermal challenges in buildings, cold chain logistics, and spacecrafts may be overcome by integrating passive radiative cooling (PRC) with aerogels having thermal insulation (TI). Herein, a universal radiative cooling silica aerogel (UCSA) is prepared through the simple regeneration and freeze‐drying of commercial quartz fiber membranes. The optically engineered UCSA with a hybrid structure (silica nanofibers/microbeads) achieves remarkable solar reflectance (RS.E. = 98.1%) and atmospheric transparency window emittance (εATW = 92.1%) under Earth conditions, with a theoretical daytime cooling power of 103.3 W m−2. In the harsh space environment, it exhibits ultrahigh average solar reflectance (RS.E. = 99.1%) and broadband mid‐infrared emittance (εMIR = 90%), achieving a cooling power of 354.1 W m−2. Compared to single‐functional approaches, UCSA synergistically integrates the PRC and TI performance for excellent thermal management capability. Moreover, this ceramic aerogel can resist temperatures up to 830 °C, safeguarding building occupants and spacecraft electronics. Furthermore, UCSA passes environmental aging and thermal vacuum outgassing tests for long‐term viability both on Earth and in space. Finally, a USCA‐covered box achieves an average sub‐ambient cooling of 18.6 °C when exposed to sunlight. In summary, UCSA opens a path for energy‐efficient and sustainable cooling strategy with universal applications. A universal radiative cooling silica nanofibrous aerogel (UCSA) is developed, combining exceptionally high solar reflectivity, mid‐infrared emissivity, and thermal insulation. UCSA provides efficient thermal management for buildings, cold chain logistics, and spacecrafts without energy consumption. It also exhibits high‐temperature resilience and environmental durability, offering a sustainable cooling strategy for diverse terrestrial and extraterrestrial applications.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202410285</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aerospace environments ; Broadband ; ceramic nanofibrous aerogel ; Cold storage ; Cooling ; Earth ; Emittance ; hierarchical structure ; Hybrid structures ; Outgassing ; passive radiative cooling ; Reflectance ; Silica aerogels ; Thermal insulation ; Thermal management</subject><ispartof>Advanced functional materials, 2024-12, Vol.34 (52), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2425-ca0aee9c00a9d17837bd026c32dbeb92c83027b09e35b65e14669e0d3a58d7303</cites><orcidid>0000-0002-5255-1731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202410285$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202410285$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Lan, Pin‐Hui</creatorcontrib><creatorcontrib>Hwang, Ching‐Wen</creatorcontrib><creatorcontrib>Chen, Tai‐Chi</creatorcontrib><creatorcontrib>Wang, Tzu‐Wei</creatorcontrib><creatorcontrib>Chen, Hsuen‐Li</creatorcontrib><creatorcontrib>Wan, Dehui</creatorcontrib><title>Hierarchical Ceramic Nanofibrous Aerogels for Universal Passive Radiative Cooling</title><title>Advanced functional materials</title><description>Solar‐induced thermal challenges in buildings, cold chain logistics, and spacecrafts may be overcome by integrating passive radiative cooling (PRC) with aerogels having thermal insulation (TI). Herein, a universal radiative cooling silica aerogel (UCSA) is prepared through the simple regeneration and freeze‐drying of commercial quartz fiber membranes. The optically engineered UCSA with a hybrid structure (silica nanofibers/microbeads) achieves remarkable solar reflectance (RS.E. = 98.1%) and atmospheric transparency window emittance (εATW = 92.1%) under Earth conditions, with a theoretical daytime cooling power of 103.3 W m−2. In the harsh space environment, it exhibits ultrahigh average solar reflectance (RS.E. = 99.1%) and broadband mid‐infrared emittance (εMIR = 90%), achieving a cooling power of 354.1 W m−2. Compared to single‐functional approaches, UCSA synergistically integrates the PRC and TI performance for excellent thermal management capability. Moreover, this ceramic aerogel can resist temperatures up to 830 °C, safeguarding building occupants and spacecraft electronics. Furthermore, UCSA passes environmental aging and thermal vacuum outgassing tests for long‐term viability both on Earth and in space. Finally, a USCA‐covered box achieves an average sub‐ambient cooling of 18.6 °C when exposed to sunlight. In summary, UCSA opens a path for energy‐efficient and sustainable cooling strategy with universal applications. A universal radiative cooling silica nanofibrous aerogel (UCSA) is developed, combining exceptionally high solar reflectivity, mid‐infrared emissivity, and thermal insulation. UCSA provides efficient thermal management for buildings, cold chain logistics, and spacecrafts without energy consumption. It also exhibits high‐temperature resilience and environmental durability, offering a sustainable cooling strategy for diverse terrestrial and extraterrestrial applications.</description><subject>Aerospace environments</subject><subject>Broadband</subject><subject>ceramic nanofibrous aerogel</subject><subject>Cold storage</subject><subject>Cooling</subject><subject>Earth</subject><subject>Emittance</subject><subject>hierarchical structure</subject><subject>Hybrid structures</subject><subject>Outgassing</subject><subject>passive radiative cooling</subject><subject>Reflectance</subject><subject>Silica aerogels</subject><subject>Thermal insulation</subject><subject>Thermal management</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUx4MoOKdXzwXPnS9Jm7bHUZ0T5k8ceAtp-jozumYmq7L_3ozJPHrKJ_D5vvf4EnJJYUQB2LWqm9WIAUsosDw9IgMqqIh5-BwfmL6fkjPvlwA0y3gyIC9Tg045_WG0aqMy8Mro6FF1tjGVs72PxujsAlsfNdZF8858ofNBfVbeB45eVW3UZkelta3pFufkpFGtx4vfd0jmk9u3chrPnu7uy_Es1ixhaawVKMRCA6iiplnOs6oGJjRndYVVwXQeLs8qKJCnlUiRJkIUCDVXaV5nHPiQXO3nrp397NFv5NL2rgsrJadJLnIqRBqs0d7SznrvsJFrZ1bKbSUFuatN7mqTh9pCoNgHvk2L239sOb6ZPPxlfwAm63Ez</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Lan, Pin‐Hui</creator><creator>Hwang, Ching‐Wen</creator><creator>Chen, Tai‐Chi</creator><creator>Wang, Tzu‐Wei</creator><creator>Chen, Hsuen‐Li</creator><creator>Wan, Dehui</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5255-1731</orcidid></search><sort><creationdate>20241201</creationdate><title>Hierarchical Ceramic Nanofibrous Aerogels for Universal Passive Radiative Cooling</title><author>Lan, Pin‐Hui ; Hwang, Ching‐Wen ; Chen, Tai‐Chi ; Wang, Tzu‐Wei ; Chen, Hsuen‐Li ; Wan, Dehui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2425-ca0aee9c00a9d17837bd026c32dbeb92c83027b09e35b65e14669e0d3a58d7303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aerospace environments</topic><topic>Broadband</topic><topic>ceramic nanofibrous aerogel</topic><topic>Cold storage</topic><topic>Cooling</topic><topic>Earth</topic><topic>Emittance</topic><topic>hierarchical structure</topic><topic>Hybrid structures</topic><topic>Outgassing</topic><topic>passive radiative cooling</topic><topic>Reflectance</topic><topic>Silica aerogels</topic><topic>Thermal insulation</topic><topic>Thermal management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lan, Pin‐Hui</creatorcontrib><creatorcontrib>Hwang, Ching‐Wen</creatorcontrib><creatorcontrib>Chen, Tai‐Chi</creatorcontrib><creatorcontrib>Wang, Tzu‐Wei</creatorcontrib><creatorcontrib>Chen, Hsuen‐Li</creatorcontrib><creatorcontrib>Wan, Dehui</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lan, Pin‐Hui</au><au>Hwang, Ching‐Wen</au><au>Chen, Tai‐Chi</au><au>Wang, Tzu‐Wei</au><au>Chen, Hsuen‐Li</au><au>Wan, Dehui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Ceramic Nanofibrous Aerogels for Universal Passive Radiative Cooling</atitle><jtitle>Advanced functional materials</jtitle><date>2024-12-01</date><risdate>2024</risdate><volume>34</volume><issue>52</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Solar‐induced thermal challenges in buildings, cold chain logistics, and spacecrafts may be overcome by integrating passive radiative cooling (PRC) with aerogels having thermal insulation (TI). Herein, a universal radiative cooling silica aerogel (UCSA) is prepared through the simple regeneration and freeze‐drying of commercial quartz fiber membranes. The optically engineered UCSA with a hybrid structure (silica nanofibers/microbeads) achieves remarkable solar reflectance (RS.E. = 98.1%) and atmospheric transparency window emittance (εATW = 92.1%) under Earth conditions, with a theoretical daytime cooling power of 103.3 W m−2. In the harsh space environment, it exhibits ultrahigh average solar reflectance (RS.E. = 99.1%) and broadband mid‐infrared emittance (εMIR = 90%), achieving a cooling power of 354.1 W m−2. Compared to single‐functional approaches, UCSA synergistically integrates the PRC and TI performance for excellent thermal management capability. Moreover, this ceramic aerogel can resist temperatures up to 830 °C, safeguarding building occupants and spacecraft electronics. Furthermore, UCSA passes environmental aging and thermal vacuum outgassing tests for long‐term viability both on Earth and in space. Finally, a USCA‐covered box achieves an average sub‐ambient cooling of 18.6 °C when exposed to sunlight. In summary, UCSA opens a path for energy‐efficient and sustainable cooling strategy with universal applications. A universal radiative cooling silica nanofibrous aerogel (UCSA) is developed, combining exceptionally high solar reflectivity, mid‐infrared emissivity, and thermal insulation. UCSA provides efficient thermal management for buildings, cold chain logistics, and spacecrafts without energy consumption. It also exhibits high‐temperature resilience and environmental durability, offering a sustainable cooling strategy for diverse terrestrial and extraterrestrial applications.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202410285</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5255-1731</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2024-12, Vol.34 (52), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3148681665
source Wiley Online Library Journals Frontfile Complete
subjects Aerospace environments
Broadband
ceramic nanofibrous aerogel
Cold storage
Cooling
Earth
Emittance
hierarchical structure
Hybrid structures
Outgassing
passive radiative cooling
Reflectance
Silica aerogels
Thermal insulation
Thermal management
title Hierarchical Ceramic Nanofibrous Aerogels for Universal Passive Radiative Cooling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A48%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Ceramic%20Nanofibrous%20Aerogels%20for%20Universal%20Passive%20Radiative%20Cooling&rft.jtitle=Advanced%20functional%20materials&rft.au=Lan,%20Pin%E2%80%90Hui&rft.date=2024-12-01&rft.volume=34&rft.issue=52&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202410285&rft_dat=%3Cproquest_cross%3E3148681665%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148681665&rft_id=info:pmid/&rfr_iscdi=true