On the invariant integration of a vector in some problems in mechanics

Invariant integration of vectors and tensors over manifolds was introduced around fifty years ago by V.N. Folomeshkin, though the concept has not attracted much attention among researchers. Although it is a sophisticated concept, the operation of the invariant integration of vectors is actually requ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-12
1. Verfasser: Saad Bin Mansoor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Saad Bin Mansoor
description Invariant integration of vectors and tensors over manifolds was introduced around fifty years ago by V.N. Folomeshkin, though the concept has not attracted much attention among researchers. Although it is a sophisticated concept, the operation of the invariant integration of vectors is actually required to correctly solve some problems in mechanics. Two such problems are discussed in the present exposition, in the context of a two-dimensional Euclidean space covered by a polar coordinate system. The notion of invariant integration becomes necessary when the space is described without any reference to a Cartesian coordinate system.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3148681471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148681471</sourcerecordid><originalsourceid>FETCH-proquest_journals_31486814713</originalsourceid><addsrcrecordid>eNqNissKwjAQRYMgWLT_MOC60Dz62IvFnRv3JZZpm9Immkn7_UbwA1zdyzlnxxIhJc9qJcSBpURTnueirERRyIQ1dwthRDB2095oG-ILOHgdjLPgetCwYRecjxzILQgv754zLvQFC3ajtqajE9v3eiZMf3tk5-b6uNyyWL9XpNBObvU2qlZyVZc1VxWX_1UfqrA7KQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148681471</pqid></control><display><type>article</type><title>On the invariant integration of a vector in some problems in mechanics</title><source>Free E- Journals</source><creator>Saad Bin Mansoor</creator><creatorcontrib>Saad Bin Mansoor</creatorcontrib><description>Invariant integration of vectors and tensors over manifolds was introduced around fifty years ago by V.N. Folomeshkin, though the concept has not attracted much attention among researchers. Although it is a sophisticated concept, the operation of the invariant integration of vectors is actually required to correctly solve some problems in mechanics. Two such problems are discussed in the present exposition, in the context of a two-dimensional Euclidean space covered by a polar coordinate system. The notion of invariant integration becomes necessary when the space is described without any reference to a Cartesian coordinate system.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cartesian coordinates ; Euclidean geometry ; Invariants ; Mechanics (physics) ; Polar coordinates ; Tensors</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Saad Bin Mansoor</creatorcontrib><title>On the invariant integration of a vector in some problems in mechanics</title><title>arXiv.org</title><description>Invariant integration of vectors and tensors over manifolds was introduced around fifty years ago by V.N. Folomeshkin, though the concept has not attracted much attention among researchers. Although it is a sophisticated concept, the operation of the invariant integration of vectors is actually required to correctly solve some problems in mechanics. Two such problems are discussed in the present exposition, in the context of a two-dimensional Euclidean space covered by a polar coordinate system. The notion of invariant integration becomes necessary when the space is described without any reference to a Cartesian coordinate system.</description><subject>Cartesian coordinates</subject><subject>Euclidean geometry</subject><subject>Invariants</subject><subject>Mechanics (physics)</subject><subject>Polar coordinates</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKwjAQRYMgWLT_MOC60Dz62IvFnRv3JZZpm9Immkn7_UbwA1zdyzlnxxIhJc9qJcSBpURTnueirERRyIQ1dwthRDB2095oG-ILOHgdjLPgetCwYRecjxzILQgv754zLvQFC3ajtqajE9v3eiZMf3tk5-b6uNyyWL9XpNBObvU2qlZyVZc1VxWX_1UfqrA7KQ</recordid><startdate>20241224</startdate><enddate>20241224</enddate><creator>Saad Bin Mansoor</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241224</creationdate><title>On the invariant integration of a vector in some problems in mechanics</title><author>Saad Bin Mansoor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31486814713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cartesian coordinates</topic><topic>Euclidean geometry</topic><topic>Invariants</topic><topic>Mechanics (physics)</topic><topic>Polar coordinates</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Saad Bin Mansoor</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saad Bin Mansoor</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the invariant integration of a vector in some problems in mechanics</atitle><jtitle>arXiv.org</jtitle><date>2024-12-24</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Invariant integration of vectors and tensors over manifolds was introduced around fifty years ago by V.N. Folomeshkin, though the concept has not attracted much attention among researchers. Although it is a sophisticated concept, the operation of the invariant integration of vectors is actually required to correctly solve some problems in mechanics. Two such problems are discussed in the present exposition, in the context of a two-dimensional Euclidean space covered by a polar coordinate system. The notion of invariant integration becomes necessary when the space is described without any reference to a Cartesian coordinate system.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_3148681471
source Free E- Journals
subjects Cartesian coordinates
Euclidean geometry
Invariants
Mechanics (physics)
Polar coordinates
Tensors
title On the invariant integration of a vector in some problems in mechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T07%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20invariant%20integration%20of%20a%20vector%20in%20some%20problems%20in%20mechanics&rft.jtitle=arXiv.org&rft.au=Saad%20Bin%20Mansoor&rft.date=2024-12-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3148681471%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148681471&rft_id=info:pmid/&rfr_iscdi=true