Representations of epistemic uncertainty and awareness in data-driven strategies: Representations of epistemic uncertainty and awareness in data-driven strategies
The diffusion of AI and big data is reshaping decision-making processes by increasing the amount of information that supports decisions, while reducing direct interaction with data and empirical evidence. This paradigm shift introduces new sources of uncertainty, as limited data observability result...
Gespeichert in:
Veröffentlicht in: | Soft computing (Berlin, Germany) Germany), 2024-12, Vol.28 (23), p.13763-13780 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13780 |
---|---|
container_issue | 23 |
container_start_page | 13763 |
container_title | Soft computing (Berlin, Germany) |
container_volume | 28 |
creator | Angelelli, Mario Gervasi, Massimiliano Ciavolino, Enrico |
description | The diffusion of AI and big data is reshaping decision-making processes by increasing the amount of information that supports decisions, while reducing direct interaction with data and empirical evidence. This paradigm shift introduces new sources of uncertainty, as limited data observability results in ambiguity and a lack of interpretability. The need for the proper analysis of data-driven strategies motivates the search for new models that can describe this type of bounded access to knowledge.This contribution presents a novel theoretical model for uncertainty in knowledge representation and its transfer mediated by agents. We provide a dynamical description of knowledge states by endowing our model with a structure to compare and combine them. Specifically, an update is represented through combinations, and its explainability is based on its consistency in different dimensional representations. We look at inequivalent knowledge representations in terms of multiplicity of inferences, preference relations, and information measures. Furthermore, we define a formal analogy with two scenarios that illustrate non-classical uncertainty in terms of ambiguity (Ellsberg’s model) and reasoning about knowledge mediated by other agents observing data (Wigner’s Friend). Finally, we discuss some implications of the proposed model for data-driven strategies, with special attention to reasoning under uncertainty about business value dimensions and the design of measurement tools for their assessment. |
doi_str_mv | 10.1007/s00500-024-09661-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3148679739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148679739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1598-a87f7c3dba0510445fd6e52e9b4256ffe5a596ed7935c8753f7d2f2e73cb89c33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczSfm81Ril9QUETPIc1OSorNrkmq-O9du4I3TzOH93lneBA6Z_SSUaqvCqWKUkK5JNQ0DSPtAZoxKQTRUpvD_c6JbqQ4RielbCjlTCsxQ0_PMGQokKqrsU8F9wHDEEuFbfR4lzzk6mKqX9ilDrtPlyFBKTgm3LnqSJfjByRcanYV1hHKKToK7q3A2e-co9fbm5fFPVk-3j0srpfEM2Va4lodtBfdylHFqJQqdA0oDmYluWpCAOWUaaDTRijfjq8G3fHAQQu_ao0XYo4upt4h9-87KNVu-l1O40krmGwbbbQwY4pPKZ_7UjIEO-S4dfnLMmp_zNnJnB3N2b05246QmKAyhtMa8l_1P9Q3OlRx_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148679739</pqid></control><display><type>article</type><title>Representations of epistemic uncertainty and awareness in data-driven strategies: Representations of epistemic uncertainty and awareness in data-driven strategies</title><source>SpringerLink Journals - AutoHoldings</source><creator>Angelelli, Mario ; Gervasi, Massimiliano ; Ciavolino, Enrico</creator><creatorcontrib>Angelelli, Mario ; Gervasi, Massimiliano ; Ciavolino, Enrico</creatorcontrib><description>The diffusion of AI and big data is reshaping decision-making processes by increasing the amount of information that supports decisions, while reducing direct interaction with data and empirical evidence. This paradigm shift introduces new sources of uncertainty, as limited data observability results in ambiguity and a lack of interpretability. The need for the proper analysis of data-driven strategies motivates the search for new models that can describe this type of bounded access to knowledge.This contribution presents a novel theoretical model for uncertainty in knowledge representation and its transfer mediated by agents. We provide a dynamical description of knowledge states by endowing our model with a structure to compare and combine them. Specifically, an update is represented through combinations, and its explainability is based on its consistency in different dimensional representations. We look at inequivalent knowledge representations in terms of multiplicity of inferences, preference relations, and information measures. Furthermore, we define a formal analogy with two scenarios that illustrate non-classical uncertainty in terms of ambiguity (Ellsberg’s model) and reasoning about knowledge mediated by other agents observing data (Wigner’s Friend). Finally, we discuss some implications of the proposed model for data-driven strategies, with special attention to reasoning under uncertainty about business value dimensions and the design of measurement tools for their assessment.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-024-09661-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ambiguity ; Artificial Intelligence ; Big Data ; Computational Intelligence ; Control ; Data analysis ; Decision making ; Engineering ; Expected values ; Focus ; Knowledge management ; Knowledge representation ; Mathematical Logic and Foundations ; Mechatronics ; Reasoning ; Robotics ; Taxonomy ; Uncertainty</subject><ispartof>Soft computing (Berlin, Germany), 2024-12, Vol.28 (23), p.13763-13780</ispartof><rights>The Author(s) 2024</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1598-a87f7c3dba0510445fd6e52e9b4256ffe5a596ed7935c8753f7d2f2e73cb89c33</cites><orcidid>0000-0002-9782-7834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-024-09661-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00500-024-09661-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Angelelli, Mario</creatorcontrib><creatorcontrib>Gervasi, Massimiliano</creatorcontrib><creatorcontrib>Ciavolino, Enrico</creatorcontrib><title>Representations of epistemic uncertainty and awareness in data-driven strategies: Representations of epistemic uncertainty and awareness in data-driven strategies</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>The diffusion of AI and big data is reshaping decision-making processes by increasing the amount of information that supports decisions, while reducing direct interaction with data and empirical evidence. This paradigm shift introduces new sources of uncertainty, as limited data observability results in ambiguity and a lack of interpretability. The need for the proper analysis of data-driven strategies motivates the search for new models that can describe this type of bounded access to knowledge.This contribution presents a novel theoretical model for uncertainty in knowledge representation and its transfer mediated by agents. We provide a dynamical description of knowledge states by endowing our model with a structure to compare and combine them. Specifically, an update is represented through combinations, and its explainability is based on its consistency in different dimensional representations. We look at inequivalent knowledge representations in terms of multiplicity of inferences, preference relations, and information measures. Furthermore, we define a formal analogy with two scenarios that illustrate non-classical uncertainty in terms of ambiguity (Ellsberg’s model) and reasoning about knowledge mediated by other agents observing data (Wigner’s Friend). Finally, we discuss some implications of the proposed model for data-driven strategies, with special attention to reasoning under uncertainty about business value dimensions and the design of measurement tools for their assessment.</description><subject>Ambiguity</subject><subject>Artificial Intelligence</subject><subject>Big Data</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Data analysis</subject><subject>Decision making</subject><subject>Engineering</subject><subject>Expected values</subject><subject>Focus</subject><subject>Knowledge management</subject><subject>Knowledge representation</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Reasoning</subject><subject>Robotics</subject><subject>Taxonomy</subject><subject>Uncertainty</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczSfm81Ril9QUETPIc1OSorNrkmq-O9du4I3TzOH93lneBA6Z_SSUaqvCqWKUkK5JNQ0DSPtAZoxKQTRUpvD_c6JbqQ4RielbCjlTCsxQ0_PMGQokKqrsU8F9wHDEEuFbfR4lzzk6mKqX9ilDrtPlyFBKTgm3LnqSJfjByRcanYV1hHKKToK7q3A2e-co9fbm5fFPVk-3j0srpfEM2Va4lodtBfdylHFqJQqdA0oDmYluWpCAOWUaaDTRijfjq8G3fHAQQu_ao0XYo4upt4h9-87KNVu-l1O40krmGwbbbQwY4pPKZ_7UjIEO-S4dfnLMmp_zNnJnB3N2b05246QmKAyhtMa8l_1P9Q3OlRx_g</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Angelelli, Mario</creator><creator>Gervasi, Massimiliano</creator><creator>Ciavolino, Enrico</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-9782-7834</orcidid></search><sort><creationdate>20241201</creationdate><title>Representations of epistemic uncertainty and awareness in data-driven strategies</title><author>Angelelli, Mario ; Gervasi, Massimiliano ; Ciavolino, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1598-a87f7c3dba0510445fd6e52e9b4256ffe5a596ed7935c8753f7d2f2e73cb89c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ambiguity</topic><topic>Artificial Intelligence</topic><topic>Big Data</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Data analysis</topic><topic>Decision making</topic><topic>Engineering</topic><topic>Expected values</topic><topic>Focus</topic><topic>Knowledge management</topic><topic>Knowledge representation</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Reasoning</topic><topic>Robotics</topic><topic>Taxonomy</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angelelli, Mario</creatorcontrib><creatorcontrib>Gervasi, Massimiliano</creatorcontrib><creatorcontrib>Ciavolino, Enrico</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angelelli, Mario</au><au>Gervasi, Massimiliano</au><au>Ciavolino, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representations of epistemic uncertainty and awareness in data-driven strategies: Representations of epistemic uncertainty and awareness in data-driven strategies</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>28</volume><issue>23</issue><spage>13763</spage><epage>13780</epage><pages>13763-13780</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>The diffusion of AI and big data is reshaping decision-making processes by increasing the amount of information that supports decisions, while reducing direct interaction with data and empirical evidence. This paradigm shift introduces new sources of uncertainty, as limited data observability results in ambiguity and a lack of interpretability. The need for the proper analysis of data-driven strategies motivates the search for new models that can describe this type of bounded access to knowledge.This contribution presents a novel theoretical model for uncertainty in knowledge representation and its transfer mediated by agents. We provide a dynamical description of knowledge states by endowing our model with a structure to compare and combine them. Specifically, an update is represented through combinations, and its explainability is based on its consistency in different dimensional representations. We look at inequivalent knowledge representations in terms of multiplicity of inferences, preference relations, and information measures. Furthermore, we define a formal analogy with two scenarios that illustrate non-classical uncertainty in terms of ambiguity (Ellsberg’s model) and reasoning about knowledge mediated by other agents observing data (Wigner’s Friend). Finally, we discuss some implications of the proposed model for data-driven strategies, with special attention to reasoning under uncertainty about business value dimensions and the design of measurement tools for their assessment.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-024-09661-8</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9782-7834</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-7643 |
ispartof | Soft computing (Berlin, Germany), 2024-12, Vol.28 (23), p.13763-13780 |
issn | 1432-7643 1433-7479 |
language | eng |
recordid | cdi_proquest_journals_3148679739 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ambiguity Artificial Intelligence Big Data Computational Intelligence Control Data analysis Decision making Engineering Expected values Focus Knowledge management Knowledge representation Mathematical Logic and Foundations Mechatronics Reasoning Robotics Taxonomy Uncertainty |
title | Representations of epistemic uncertainty and awareness in data-driven strategies: Representations of epistemic uncertainty and awareness in data-driven strategies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representations%20of%20epistemic%20uncertainty%20and%20awareness%20in%20data-driven%20strategies:%20Representations%20of%20epistemic%20uncertainty%20and%20awareness%20in%20data-driven%20strategies&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Angelelli,%20Mario&rft.date=2024-12-01&rft.volume=28&rft.issue=23&rft.spage=13763&rft.epage=13780&rft.pages=13763-13780&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-024-09661-8&rft_dat=%3Cproquest_cross%3E3148679739%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148679739&rft_id=info:pmid/&rfr_iscdi=true |