Representations of epistemic uncertainty and awareness in data-driven strategies: Representations of epistemic uncertainty and awareness in data-driven strategies

The diffusion of AI and big data is reshaping decision-making processes by increasing the amount of information that supports decisions, while reducing direct interaction with data and empirical evidence. This paradigm shift introduces new sources of uncertainty, as limited data observability result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2024-12, Vol.28 (23), p.13763-13780
Hauptverfasser: Angelelli, Mario, Gervasi, Massimiliano, Ciavolino, Enrico
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13780
container_issue 23
container_start_page 13763
container_title Soft computing (Berlin, Germany)
container_volume 28
creator Angelelli, Mario
Gervasi, Massimiliano
Ciavolino, Enrico
description The diffusion of AI and big data is reshaping decision-making processes by increasing the amount of information that supports decisions, while reducing direct interaction with data and empirical evidence. This paradigm shift introduces new sources of uncertainty, as limited data observability results in ambiguity and a lack of interpretability. The need for the proper analysis of data-driven strategies motivates the search for new models that can describe this type of bounded access to knowledge.This contribution presents a novel theoretical model for uncertainty in knowledge representation and its transfer mediated by agents. We provide a dynamical description of knowledge states by endowing our model with a structure to compare and combine them. Specifically, an update is represented through combinations, and its explainability is based on its consistency in different dimensional representations. We look at inequivalent knowledge representations in terms of multiplicity of inferences, preference relations, and information measures. Furthermore, we define a formal analogy with two scenarios that illustrate non-classical uncertainty in terms of ambiguity (Ellsberg’s model) and reasoning about knowledge mediated by other agents observing data (Wigner’s Friend). Finally, we discuss some implications of the proposed model for data-driven strategies, with special attention to reasoning under uncertainty about business value dimensions and the design of measurement tools for their assessment.
doi_str_mv 10.1007/s00500-024-09661-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3148679739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148679739</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1598-a87f7c3dba0510445fd6e52e9b4256ffe5a596ed7935c8753f7d2f2e73cb89c33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczSfm81Ril9QUETPIc1OSorNrkmq-O9du4I3TzOH93lneBA6Z_SSUaqvCqWKUkK5JNQ0DSPtAZoxKQTRUpvD_c6JbqQ4RielbCjlTCsxQ0_PMGQokKqrsU8F9wHDEEuFbfR4lzzk6mKqX9ilDrtPlyFBKTgm3LnqSJfjByRcanYV1hHKKToK7q3A2e-co9fbm5fFPVk-3j0srpfEM2Va4lodtBfdylHFqJQqdA0oDmYluWpCAOWUaaDTRijfjq8G3fHAQQu_ao0XYo4upt4h9-87KNVu-l1O40krmGwbbbQwY4pPKZ_7UjIEO-S4dfnLMmp_zNnJnB3N2b05246QmKAyhtMa8l_1P9Q3OlRx_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148679739</pqid></control><display><type>article</type><title>Representations of epistemic uncertainty and awareness in data-driven strategies: Representations of epistemic uncertainty and awareness in data-driven strategies</title><source>SpringerLink Journals - AutoHoldings</source><creator>Angelelli, Mario ; Gervasi, Massimiliano ; Ciavolino, Enrico</creator><creatorcontrib>Angelelli, Mario ; Gervasi, Massimiliano ; Ciavolino, Enrico</creatorcontrib><description>The diffusion of AI and big data is reshaping decision-making processes by increasing the amount of information that supports decisions, while reducing direct interaction with data and empirical evidence. This paradigm shift introduces new sources of uncertainty, as limited data observability results in ambiguity and a lack of interpretability. The need for the proper analysis of data-driven strategies motivates the search for new models that can describe this type of bounded access to knowledge.This contribution presents a novel theoretical model for uncertainty in knowledge representation and its transfer mediated by agents. We provide a dynamical description of knowledge states by endowing our model with a structure to compare and combine them. Specifically, an update is represented through combinations, and its explainability is based on its consistency in different dimensional representations. We look at inequivalent knowledge representations in terms of multiplicity of inferences, preference relations, and information measures. Furthermore, we define a formal analogy with two scenarios that illustrate non-classical uncertainty in terms of ambiguity (Ellsberg’s model) and reasoning about knowledge mediated by other agents observing data (Wigner’s Friend). Finally, we discuss some implications of the proposed model for data-driven strategies, with special attention to reasoning under uncertainty about business value dimensions and the design of measurement tools for their assessment.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-024-09661-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Ambiguity ; Artificial Intelligence ; Big Data ; Computational Intelligence ; Control ; Data analysis ; Decision making ; Engineering ; Expected values ; Focus ; Knowledge management ; Knowledge representation ; Mathematical Logic and Foundations ; Mechatronics ; Reasoning ; Robotics ; Taxonomy ; Uncertainty</subject><ispartof>Soft computing (Berlin, Germany), 2024-12, Vol.28 (23), p.13763-13780</ispartof><rights>The Author(s) 2024</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1598-a87f7c3dba0510445fd6e52e9b4256ffe5a596ed7935c8753f7d2f2e73cb89c33</cites><orcidid>0000-0002-9782-7834</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-024-09661-8$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00500-024-09661-8$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Angelelli, Mario</creatorcontrib><creatorcontrib>Gervasi, Massimiliano</creatorcontrib><creatorcontrib>Ciavolino, Enrico</creatorcontrib><title>Representations of epistemic uncertainty and awareness in data-driven strategies: Representations of epistemic uncertainty and awareness in data-driven strategies</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>The diffusion of AI and big data is reshaping decision-making processes by increasing the amount of information that supports decisions, while reducing direct interaction with data and empirical evidence. This paradigm shift introduces new sources of uncertainty, as limited data observability results in ambiguity and a lack of interpretability. The need for the proper analysis of data-driven strategies motivates the search for new models that can describe this type of bounded access to knowledge.This contribution presents a novel theoretical model for uncertainty in knowledge representation and its transfer mediated by agents. We provide a dynamical description of knowledge states by endowing our model with a structure to compare and combine them. Specifically, an update is represented through combinations, and its explainability is based on its consistency in different dimensional representations. We look at inequivalent knowledge representations in terms of multiplicity of inferences, preference relations, and information measures. Furthermore, we define a formal analogy with two scenarios that illustrate non-classical uncertainty in terms of ambiguity (Ellsberg’s model) and reasoning about knowledge mediated by other agents observing data (Wigner’s Friend). Finally, we discuss some implications of the proposed model for data-driven strategies, with special attention to reasoning under uncertainty about business value dimensions and the design of measurement tools for their assessment.</description><subject>Ambiguity</subject><subject>Artificial Intelligence</subject><subject>Big Data</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Data analysis</subject><subject>Decision making</subject><subject>Engineering</subject><subject>Expected values</subject><subject>Focus</subject><subject>Knowledge management</subject><subject>Knowledge representation</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Reasoning</subject><subject>Robotics</subject><subject>Taxonomy</subject><subject>Uncertainty</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczSfm81Ril9QUETPIc1OSorNrkmq-O9du4I3TzOH93lneBA6Z_SSUaqvCqWKUkK5JNQ0DSPtAZoxKQTRUpvD_c6JbqQ4RielbCjlTCsxQ0_PMGQokKqrsU8F9wHDEEuFbfR4lzzk6mKqX9ilDrtPlyFBKTgm3LnqSJfjByRcanYV1hHKKToK7q3A2e-co9fbm5fFPVk-3j0srpfEM2Va4lodtBfdylHFqJQqdA0oDmYluWpCAOWUaaDTRijfjq8G3fHAQQu_ao0XYo4upt4h9-87KNVu-l1O40krmGwbbbQwY4pPKZ_7UjIEO-S4dfnLMmp_zNnJnB3N2b05246QmKAyhtMa8l_1P9Q3OlRx_g</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Angelelli, Mario</creator><creator>Gervasi, Massimiliano</creator><creator>Ciavolino, Enrico</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0002-9782-7834</orcidid></search><sort><creationdate>20241201</creationdate><title>Representations of epistemic uncertainty and awareness in data-driven strategies</title><author>Angelelli, Mario ; Gervasi, Massimiliano ; Ciavolino, Enrico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1598-a87f7c3dba0510445fd6e52e9b4256ffe5a596ed7935c8753f7d2f2e73cb89c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ambiguity</topic><topic>Artificial Intelligence</topic><topic>Big Data</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Data analysis</topic><topic>Decision making</topic><topic>Engineering</topic><topic>Expected values</topic><topic>Focus</topic><topic>Knowledge management</topic><topic>Knowledge representation</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Reasoning</topic><topic>Robotics</topic><topic>Taxonomy</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angelelli, Mario</creatorcontrib><creatorcontrib>Gervasi, Massimiliano</creatorcontrib><creatorcontrib>Ciavolino, Enrico</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angelelli, Mario</au><au>Gervasi, Massimiliano</au><au>Ciavolino, Enrico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representations of epistemic uncertainty and awareness in data-driven strategies: Representations of epistemic uncertainty and awareness in data-driven strategies</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>28</volume><issue>23</issue><spage>13763</spage><epage>13780</epage><pages>13763-13780</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>The diffusion of AI and big data is reshaping decision-making processes by increasing the amount of information that supports decisions, while reducing direct interaction with data and empirical evidence. This paradigm shift introduces new sources of uncertainty, as limited data observability results in ambiguity and a lack of interpretability. The need for the proper analysis of data-driven strategies motivates the search for new models that can describe this type of bounded access to knowledge.This contribution presents a novel theoretical model for uncertainty in knowledge representation and its transfer mediated by agents. We provide a dynamical description of knowledge states by endowing our model with a structure to compare and combine them. Specifically, an update is represented through combinations, and its explainability is based on its consistency in different dimensional representations. We look at inequivalent knowledge representations in terms of multiplicity of inferences, preference relations, and information measures. Furthermore, we define a formal analogy with two scenarios that illustrate non-classical uncertainty in terms of ambiguity (Ellsberg’s model) and reasoning about knowledge mediated by other agents observing data (Wigner’s Friend). Finally, we discuss some implications of the proposed model for data-driven strategies, with special attention to reasoning under uncertainty about business value dimensions and the design of measurement tools for their assessment.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-024-09661-8</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9782-7834</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2024-12, Vol.28 (23), p.13763-13780
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_3148679739
source SpringerLink Journals - AutoHoldings
subjects Ambiguity
Artificial Intelligence
Big Data
Computational Intelligence
Control
Data analysis
Decision making
Engineering
Expected values
Focus
Knowledge management
Knowledge representation
Mathematical Logic and Foundations
Mechatronics
Reasoning
Robotics
Taxonomy
Uncertainty
title Representations of epistemic uncertainty and awareness in data-driven strategies: Representations of epistemic uncertainty and awareness in data-driven strategies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representations%20of%20epistemic%20uncertainty%20and%20awareness%20in%20data-driven%20strategies:%20Representations%20of%20epistemic%20uncertainty%20and%20awareness%20in%20data-driven%20strategies&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Angelelli,%20Mario&rft.date=2024-12-01&rft.volume=28&rft.issue=23&rft.spage=13763&rft.epage=13780&rft.pages=13763-13780&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-024-09661-8&rft_dat=%3Cproquest_cross%3E3148679739%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148679739&rft_id=info:pmid/&rfr_iscdi=true