Multicategory fire damage detection of post‐fire reinforced concrete structural components
This paper introduces an enhanced you only look once (YOLO) v5s‐D network customized for detecting various categories of damage to post‐fire reinforced concrete (RC) components. These damage types encompass surface soot, cracks, concrete spalling, and rebar exposure. A dataset containing 1536 images...
Gespeichert in:
Veröffentlicht in: | Computer-aided civil and infrastructure engineering 2025-01, Vol.40 (1), p.91-112 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112 |
---|---|
container_issue | 1 |
container_start_page | 91 |
container_title | Computer-aided civil and infrastructure engineering |
container_volume | 40 |
creator | Wang, Pengfei Liu, Caiwei Wang, Xinyu Tian, Libin Miao, Jijun Liu, Yanchun |
description | This paper introduces an enhanced you only look once (YOLO) v5s‐D network customized for detecting various categories of damage to post‐fire reinforced concrete (RC) components. These damage types encompass surface soot, cracks, concrete spalling, and rebar exposure. A dataset containing 1536 images depicting damaged RC components was compiled. By integrating ShuffleNet, adaptive attention mechanisms, and a feature enhancement module, the capability of the network for multi‐scale feature extraction in complex backgrounds was improved, alongside a reduction in model parameters. Consequently, YOLOv5s‐D achieved a detection accuracy of 93%, marking an 11% enhancement over the baseline YOLOv5s network. Comparison and ablation tests conducted on different modules, varying dataset sizes, against other state‐of‐the‐art networks, and on public datasets validate the resilience, superiority, and generalization capability of YOLOv5s‐D. Finally, an application leveraging YOLOv5s‐D was developed and integrated into a mobile device to facilitate real‐time detection of post‐fire damaged RC components. This application can integrate diverse fire scenarios and data types, expanding its scope in future. The proposed detection method compensates for the subjective limitations of manual inspections, providing a reference for damage assessment. |
doi_str_mv | 10.1111/mice.13314 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3148053477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3148053477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1904-1deb2a9a098bf01692575667420bae3d0408031afe1570d9f954205d857886523</originalsourceid><addsrcrecordid>eNp9kM9KAzEQxoMoWKsXn2DBm7A12SSb5Cil1kKLF70JIc0mZcvuZk2ySG8-gs_ok5h2PTuXGeb7zR8-AG4RnKEUD22tzQxhjMgZmCBSspyXJTtPNRQ4FyVnl-AqhD1MQQiegPfN0MRaq2h2zh8yW3uTVapVu5RMNDrWrsuczXoX4s_X90n3pu6s89pUmXad9onLQvSDjoNXTeq1vetMF8M1uLCqCebmL0_B29Pidf6cr1-Wq_njOtdIQJKjymwLJRQUfGshKkVBGU1vkwJulcEVJJBDjJQ1iDJYCStokmjFKeO8pAWegrtxb-_dx2BClHs3-C6dlMkJDikmjCXqfqS0dyF4Y2Xv61b5g0RQHt2TR_fkyb0EoxH-rBtz-IeUm9V8Mc78AvG5cvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3148053477</pqid></control><display><type>article</type><title>Multicategory fire damage detection of post‐fire reinforced concrete structural components</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Pengfei ; Liu, Caiwei ; Wang, Xinyu ; Tian, Libin ; Miao, Jijun ; Liu, Yanchun</creator><creatorcontrib>Wang, Pengfei ; Liu, Caiwei ; Wang, Xinyu ; Tian, Libin ; Miao, Jijun ; Liu, Yanchun</creatorcontrib><description>This paper introduces an enhanced you only look once (YOLO) v5s‐D network customized for detecting various categories of damage to post‐fire reinforced concrete (RC) components. These damage types encompass surface soot, cracks, concrete spalling, and rebar exposure. A dataset containing 1536 images depicting damaged RC components was compiled. By integrating ShuffleNet, adaptive attention mechanisms, and a feature enhancement module, the capability of the network for multi‐scale feature extraction in complex backgrounds was improved, alongside a reduction in model parameters. Consequently, YOLOv5s‐D achieved a detection accuracy of 93%, marking an 11% enhancement over the baseline YOLOv5s network. Comparison and ablation tests conducted on different modules, varying dataset sizes, against other state‐of‐the‐art networks, and on public datasets validate the resilience, superiority, and generalization capability of YOLOv5s‐D. Finally, an application leveraging YOLOv5s‐D was developed and integrated into a mobile device to facilitate real‐time detection of post‐fire damaged RC components. This application can integrate diverse fire scenarios and data types, expanding its scope in future. The proposed detection method compensates for the subjective limitations of manual inspections, providing a reference for damage assessment.</description><identifier>ISSN: 1093-9687</identifier><identifier>EISSN: 1467-8667</identifier><identifier>DOI: 10.1111/mice.13314</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Ablation ; Damage assessment ; Damage detection ; Datasets ; Feature extraction ; Fire damage ; Modules ; Reinforced concrete ; Spalling</subject><ispartof>Computer-aided civil and infrastructure engineering, 2025-01, Vol.40 (1), p.91-112</ispartof><rights>2024 .</rights><rights>2025 Computer‐Aided Civil and Infrastructure Engineering.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1904-1deb2a9a098bf01692575667420bae3d0408031afe1570d9f954205d857886523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmice.13314$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmice.13314$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Liu, Caiwei</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Tian, Libin</creatorcontrib><creatorcontrib>Miao, Jijun</creatorcontrib><creatorcontrib>Liu, Yanchun</creatorcontrib><title>Multicategory fire damage detection of post‐fire reinforced concrete structural components</title><title>Computer-aided civil and infrastructure engineering</title><description>This paper introduces an enhanced you only look once (YOLO) v5s‐D network customized for detecting various categories of damage to post‐fire reinforced concrete (RC) components. These damage types encompass surface soot, cracks, concrete spalling, and rebar exposure. A dataset containing 1536 images depicting damaged RC components was compiled. By integrating ShuffleNet, adaptive attention mechanisms, and a feature enhancement module, the capability of the network for multi‐scale feature extraction in complex backgrounds was improved, alongside a reduction in model parameters. Consequently, YOLOv5s‐D achieved a detection accuracy of 93%, marking an 11% enhancement over the baseline YOLOv5s network. Comparison and ablation tests conducted on different modules, varying dataset sizes, against other state‐of‐the‐art networks, and on public datasets validate the resilience, superiority, and generalization capability of YOLOv5s‐D. Finally, an application leveraging YOLOv5s‐D was developed and integrated into a mobile device to facilitate real‐time detection of post‐fire damaged RC components. This application can integrate diverse fire scenarios and data types, expanding its scope in future. The proposed detection method compensates for the subjective limitations of manual inspections, providing a reference for damage assessment.</description><subject>Ablation</subject><subject>Damage assessment</subject><subject>Damage detection</subject><subject>Datasets</subject><subject>Feature extraction</subject><subject>Fire damage</subject><subject>Modules</subject><subject>Reinforced concrete</subject><subject>Spalling</subject><issn>1093-9687</issn><issn>1467-8667</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kM9KAzEQxoMoWKsXn2DBm7A12SSb5Cil1kKLF70JIc0mZcvuZk2ySG8-gs_ok5h2PTuXGeb7zR8-AG4RnKEUD22tzQxhjMgZmCBSspyXJTtPNRQ4FyVnl-AqhD1MQQiegPfN0MRaq2h2zh8yW3uTVapVu5RMNDrWrsuczXoX4s_X90n3pu6s89pUmXad9onLQvSDjoNXTeq1vetMF8M1uLCqCebmL0_B29Pidf6cr1-Wq_njOtdIQJKjymwLJRQUfGshKkVBGU1vkwJulcEVJJBDjJQ1iDJYCStokmjFKeO8pAWegrtxb-_dx2BClHs3-C6dlMkJDikmjCXqfqS0dyF4Y2Xv61b5g0RQHt2TR_fkyb0EoxH-rBtz-IeUm9V8Mc78AvG5cvg</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Wang, Pengfei</creator><creator>Liu, Caiwei</creator><creator>Wang, Xinyu</creator><creator>Tian, Libin</creator><creator>Miao, Jijun</creator><creator>Liu, Yanchun</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20250101</creationdate><title>Multicategory fire damage detection of post‐fire reinforced concrete structural components</title><author>Wang, Pengfei ; Liu, Caiwei ; Wang, Xinyu ; Tian, Libin ; Miao, Jijun ; Liu, Yanchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1904-1deb2a9a098bf01692575667420bae3d0408031afe1570d9f954205d857886523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Ablation</topic><topic>Damage assessment</topic><topic>Damage detection</topic><topic>Datasets</topic><topic>Feature extraction</topic><topic>Fire damage</topic><topic>Modules</topic><topic>Reinforced concrete</topic><topic>Spalling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Pengfei</creatorcontrib><creatorcontrib>Liu, Caiwei</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Tian, Libin</creatorcontrib><creatorcontrib>Miao, Jijun</creatorcontrib><creatorcontrib>Liu, Yanchun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer-aided civil and infrastructure engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Pengfei</au><au>Liu, Caiwei</au><au>Wang, Xinyu</au><au>Tian, Libin</au><au>Miao, Jijun</au><au>Liu, Yanchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicategory fire damage detection of post‐fire reinforced concrete structural components</atitle><jtitle>Computer-aided civil and infrastructure engineering</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>40</volume><issue>1</issue><spage>91</spage><epage>112</epage><pages>91-112</pages><issn>1093-9687</issn><eissn>1467-8667</eissn><abstract>This paper introduces an enhanced you only look once (YOLO) v5s‐D network customized for detecting various categories of damage to post‐fire reinforced concrete (RC) components. These damage types encompass surface soot, cracks, concrete spalling, and rebar exposure. A dataset containing 1536 images depicting damaged RC components was compiled. By integrating ShuffleNet, adaptive attention mechanisms, and a feature enhancement module, the capability of the network for multi‐scale feature extraction in complex backgrounds was improved, alongside a reduction in model parameters. Consequently, YOLOv5s‐D achieved a detection accuracy of 93%, marking an 11% enhancement over the baseline YOLOv5s network. Comparison and ablation tests conducted on different modules, varying dataset sizes, against other state‐of‐the‐art networks, and on public datasets validate the resilience, superiority, and generalization capability of YOLOv5s‐D. Finally, an application leveraging YOLOv5s‐D was developed and integrated into a mobile device to facilitate real‐time detection of post‐fire damaged RC components. This application can integrate diverse fire scenarios and data types, expanding its scope in future. The proposed detection method compensates for the subjective limitations of manual inspections, providing a reference for damage assessment.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/mice.13314</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1093-9687 |
ispartof | Computer-aided civil and infrastructure engineering, 2025-01, Vol.40 (1), p.91-112 |
issn | 1093-9687 1467-8667 |
language | eng |
recordid | cdi_proquest_journals_3148053477 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Ablation Damage assessment Damage detection Datasets Feature extraction Fire damage Modules Reinforced concrete Spalling |
title | Multicategory fire damage detection of post‐fire reinforced concrete structural components |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A17%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicategory%20fire%20damage%20detection%20of%20post%E2%80%90fire%20reinforced%20concrete%20structural%20components&rft.jtitle=Computer-aided%20civil%20and%20infrastructure%20engineering&rft.au=Wang,%20Pengfei&rft.date=2025-01-01&rft.volume=40&rft.issue=1&rft.spage=91&rft.epage=112&rft.pages=91-112&rft.issn=1093-9687&rft.eissn=1467-8667&rft_id=info:doi/10.1111/mice.13314&rft_dat=%3Cproquest_cross%3E3148053477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3148053477&rft_id=info:pmid/&rfr_iscdi=true |