Improved Real-Time Smoke Detection Model Based on RT-DETR

Fire remains a major threat to society and economic activities. Given the real-time demands of smoke detection, most research in deep learning has focused on Convolutional Neural Networks. The Real-Time Detection Transformer (RT-DETR) introduces a promising alternative for this task. This paper exte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications 2024-01, Vol.15 (11)
Hauptverfasser: ZHENG, Yuanpan, HUANG, Zeyuan, CHEN, Binbin, WANG, Chao, ZHANG, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title International journal of advanced computer science & applications
container_volume 15
creator ZHENG, Yuanpan
HUANG, Zeyuan
CHEN, Binbin
WANG, Chao
ZHANG, Yu
description Fire remains a major threat to society and economic activities. Given the real-time demands of smoke detection, most research in deep learning has focused on Convolutional Neural Networks. The Real-Time Detection Transformer (RT-DETR) introduces a promising alternative for this task. This paper extends RT-DETR to address challenges such as morphological variations and interference in smoke detection by proposing the Realtime Smoke Detection Transformer (RS-DETR). RS-DETR uses smoke images with concentration data as input and employs a deformable attention module to manage morphological changes, enabling robust feature extraction. Additionally, a Cross-Scale Smoke Feature Fusion Module (CS-SFFM) is integrated to enhance detection accuracy for small and thin smoke targets through multi-scale feature resampling and fusion. To improve convergence speed and stability, Efficient Intersection over Union (EIoU) replaces Generalized Intersection over Union (GIoU) in feature scoring. The improved model achieves an average precision of 93.9% on a custom dataset, representing a 5.7% improvement over the original model, and demonstrates excellent performance across various detection scenarios.
doi_str_mv 10.14569/IJACSA.2024.0151138
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3147965185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147965185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-b1cf26d2662dc25076bb2db2feadbb1b5bba9473bf3ed90a8e1699649b0860613</originalsourceid><addsrcrecordid>eNotkE1Lw0AQhhdRsNT-Aw8Bz1t39ivZY21rrVSENIK3ZTc7gdamqdlU8N8b285l5oWHmeEh5B7YGKTS5nH5OpmuJ2POuBwzUAAiuyIDDkpTpVJ2fZozCiz9vCWjGLesL2G4zsSAmGV9aJsfDEmObkeLTY3Jum6-MJlhh2W3afbJWxNwlzy52FN9zAs6mxf5Hbmp3C7i6NKH5ON5Xkxf6Op9sZxOVrTkTHbUQ1lxHbjWPJRcsVR7z4PnFbrgPXjlvTMyFb4SGAxzGYI2RkvjWaaZBjEkD-e9_Z_fR4yd3TbHdt-ftAJkarSCTPWUPFNl28TYYmUP7aZ27a8FZk-e7NmT_fdkL57EHx0lWRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147965185</pqid></control><display><type>article</type><title>Improved Real-Time Smoke Detection Model Based on RT-DETR</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>ZHENG, Yuanpan ; HUANG, Zeyuan ; CHEN, Binbin ; WANG, Chao ; ZHANG, Yu</creator><creatorcontrib>ZHENG, Yuanpan ; HUANG, Zeyuan ; CHEN, Binbin ; WANG, Chao ; ZHANG, Yu</creatorcontrib><description>Fire remains a major threat to society and economic activities. Given the real-time demands of smoke detection, most research in deep learning has focused on Convolutional Neural Networks. The Real-Time Detection Transformer (RT-DETR) introduces a promising alternative for this task. This paper extends RT-DETR to address challenges such as morphological variations and interference in smoke detection by proposing the Realtime Smoke Detection Transformer (RS-DETR). RS-DETR uses smoke images with concentration data as input and employs a deformable attention module to manage morphological changes, enabling robust feature extraction. Additionally, a Cross-Scale Smoke Feature Fusion Module (CS-SFFM) is integrated to enhance detection accuracy for small and thin smoke targets through multi-scale feature resampling and fusion. To improve convergence speed and stability, Efficient Intersection over Union (EIoU) replaces Generalized Intersection over Union (GIoU) in feature scoring. The improved model achieves an average precision of 93.9% on a custom dataset, representing a 5.7% improvement over the original model, and demonstrates excellent performance across various detection scenarios.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2024.0151138</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Accuracy ; Artificial neural networks ; Codes ; Computer science ; Datasets ; Deep learning ; Economic activity ; Feature extraction ; Formability ; Machine learning ; Modules ; Morphology ; Optimization ; Real time ; Resampling ; Smoke ; Smoke detectors ; Target detection</subject><ispartof>International journal of advanced computer science &amp; applications, 2024-01, Vol.15 (11)</ispartof><rights>2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>ZHENG, Yuanpan</creatorcontrib><creatorcontrib>HUANG, Zeyuan</creatorcontrib><creatorcontrib>CHEN, Binbin</creatorcontrib><creatorcontrib>WANG, Chao</creatorcontrib><creatorcontrib>ZHANG, Yu</creatorcontrib><title>Improved Real-Time Smoke Detection Model Based on RT-DETR</title><title>International journal of advanced computer science &amp; applications</title><description>Fire remains a major threat to society and economic activities. Given the real-time demands of smoke detection, most research in deep learning has focused on Convolutional Neural Networks. The Real-Time Detection Transformer (RT-DETR) introduces a promising alternative for this task. This paper extends RT-DETR to address challenges such as morphological variations and interference in smoke detection by proposing the Realtime Smoke Detection Transformer (RS-DETR). RS-DETR uses smoke images with concentration data as input and employs a deformable attention module to manage morphological changes, enabling robust feature extraction. Additionally, a Cross-Scale Smoke Feature Fusion Module (CS-SFFM) is integrated to enhance detection accuracy for small and thin smoke targets through multi-scale feature resampling and fusion. To improve convergence speed and stability, Efficient Intersection over Union (EIoU) replaces Generalized Intersection over Union (GIoU) in feature scoring. The improved model achieves an average precision of 93.9% on a custom dataset, representing a 5.7% improvement over the original model, and demonstrates excellent performance across various detection scenarios.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Codes</subject><subject>Computer science</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Economic activity</subject><subject>Feature extraction</subject><subject>Formability</subject><subject>Machine learning</subject><subject>Modules</subject><subject>Morphology</subject><subject>Optimization</subject><subject>Real time</subject><subject>Resampling</subject><subject>Smoke</subject><subject>Smoke detectors</subject><subject>Target detection</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1Lw0AQhhdRsNT-Aw8Bz1t39ivZY21rrVSENIK3ZTc7gdamqdlU8N8b285l5oWHmeEh5B7YGKTS5nH5OpmuJ2POuBwzUAAiuyIDDkpTpVJ2fZozCiz9vCWjGLesL2G4zsSAmGV9aJsfDEmObkeLTY3Jum6-MJlhh2W3afbJWxNwlzy52FN9zAs6mxf5Hbmp3C7i6NKH5ON5Xkxf6Op9sZxOVrTkTHbUQ1lxHbjWPJRcsVR7z4PnFbrgPXjlvTMyFb4SGAxzGYI2RkvjWaaZBjEkD-e9_Z_fR4yd3TbHdt-ftAJkarSCTPWUPFNl28TYYmUP7aZ27a8FZk-e7NmT_fdkL57EHx0lWRI</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>ZHENG, Yuanpan</creator><creator>HUANG, Zeyuan</creator><creator>CHEN, Binbin</creator><creator>WANG, Chao</creator><creator>ZHANG, Yu</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20240101</creationdate><title>Improved Real-Time Smoke Detection Model Based on RT-DETR</title><author>ZHENG, Yuanpan ; HUANG, Zeyuan ; CHEN, Binbin ; WANG, Chao ; ZHANG, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-b1cf26d2662dc25076bb2db2feadbb1b5bba9473bf3ed90a8e1699649b0860613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Codes</topic><topic>Computer science</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Economic activity</topic><topic>Feature extraction</topic><topic>Formability</topic><topic>Machine learning</topic><topic>Modules</topic><topic>Morphology</topic><topic>Optimization</topic><topic>Real time</topic><topic>Resampling</topic><topic>Smoke</topic><topic>Smoke detectors</topic><topic>Target detection</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHENG, Yuanpan</creatorcontrib><creatorcontrib>HUANG, Zeyuan</creatorcontrib><creatorcontrib>CHEN, Binbin</creatorcontrib><creatorcontrib>WANG, Chao</creatorcontrib><creatorcontrib>ZHANG, Yu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHENG, Yuanpan</au><au>HUANG, Zeyuan</au><au>CHEN, Binbin</au><au>WANG, Chao</au><au>ZHANG, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Real-Time Smoke Detection Model Based on RT-DETR</atitle><jtitle>International journal of advanced computer science &amp; applications</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>15</volume><issue>11</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>Fire remains a major threat to society and economic activities. Given the real-time demands of smoke detection, most research in deep learning has focused on Convolutional Neural Networks. The Real-Time Detection Transformer (RT-DETR) introduces a promising alternative for this task. This paper extends RT-DETR to address challenges such as morphological variations and interference in smoke detection by proposing the Realtime Smoke Detection Transformer (RS-DETR). RS-DETR uses smoke images with concentration data as input and employs a deformable attention module to manage morphological changes, enabling robust feature extraction. Additionally, a Cross-Scale Smoke Feature Fusion Module (CS-SFFM) is integrated to enhance detection accuracy for small and thin smoke targets through multi-scale feature resampling and fusion. To improve convergence speed and stability, Efficient Intersection over Union (EIoU) replaces Generalized Intersection over Union (GIoU) in feature scoring. The improved model achieves an average precision of 93.9% on a custom dataset, representing a 5.7% improvement over the original model, and demonstrates excellent performance across various detection scenarios.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2024.0151138</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-107X
ispartof International journal of advanced computer science & applications, 2024-01, Vol.15 (11)
issn 2158-107X
2156-5570
language eng
recordid cdi_proquest_journals_3147965185
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Artificial neural networks
Codes
Computer science
Datasets
Deep learning
Economic activity
Feature extraction
Formability
Machine learning
Modules
Morphology
Optimization
Real time
Resampling
Smoke
Smoke detectors
Target detection
title Improved Real-Time Smoke Detection Model Based on RT-DETR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Real-Time%20Smoke%20Detection%20Model%20Based%20on%20RT-DETR&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=ZHENG,%20Yuanpan&rft.date=2024-01-01&rft.volume=15&rft.issue=11&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2024.0151138&rft_dat=%3Cproquest_cross%3E3147965185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147965185&rft_id=info:pmid/&rfr_iscdi=true