Improved Real-Time Smoke Detection Model Based on RT-DETR
Fire remains a major threat to society and economic activities. Given the real-time demands of smoke detection, most research in deep learning has focused on Convolutional Neural Networks. The Real-Time Detection Transformer (RT-DETR) introduces a promising alternative for this task. This paper exte...
Gespeichert in:
Veröffentlicht in: | International journal of advanced computer science & applications 2024-01, Vol.15 (11) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | International journal of advanced computer science & applications |
container_volume | 15 |
creator | ZHENG, Yuanpan HUANG, Zeyuan CHEN, Binbin WANG, Chao ZHANG, Yu |
description | Fire remains a major threat to society and economic activities. Given the real-time demands of smoke detection, most research in deep learning has focused on Convolutional Neural Networks. The Real-Time Detection Transformer (RT-DETR) introduces a promising alternative for this task. This paper extends RT-DETR to address challenges such as morphological variations and interference in smoke detection by proposing the Realtime Smoke Detection Transformer (RS-DETR). RS-DETR uses smoke images with concentration data as input and employs a deformable attention module to manage morphological changes, enabling robust feature extraction. Additionally, a Cross-Scale Smoke Feature Fusion Module (CS-SFFM) is integrated to enhance detection accuracy for small and thin smoke targets through multi-scale feature resampling and fusion. To improve convergence speed and stability, Efficient Intersection over Union (EIoU) replaces Generalized Intersection over Union (GIoU) in feature scoring. The improved model achieves an average precision of 93.9% on a custom dataset, representing a 5.7% improvement over the original model, and demonstrates excellent performance across various detection scenarios. |
doi_str_mv | 10.14569/IJACSA.2024.0151138 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3147965185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147965185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-b1cf26d2662dc25076bb2db2feadbb1b5bba9473bf3ed90a8e1699649b0860613</originalsourceid><addsrcrecordid>eNotkE1Lw0AQhhdRsNT-Aw8Bz1t39ivZY21rrVSENIK3ZTc7gdamqdlU8N8b285l5oWHmeEh5B7YGKTS5nH5OpmuJ2POuBwzUAAiuyIDDkpTpVJ2fZozCiz9vCWjGLesL2G4zsSAmGV9aJsfDEmObkeLTY3Jum6-MJlhh2W3afbJWxNwlzy52FN9zAs6mxf5Hbmp3C7i6NKH5ON5Xkxf6Op9sZxOVrTkTHbUQ1lxHbjWPJRcsVR7z4PnFbrgPXjlvTMyFb4SGAxzGYI2RkvjWaaZBjEkD-e9_Z_fR4yd3TbHdt-ftAJkarSCTPWUPFNl28TYYmUP7aZ27a8FZk-e7NmT_fdkL57EHx0lWRI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147965185</pqid></control><display><type>article</type><title>Improved Real-Time Smoke Detection Model Based on RT-DETR</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>ZHENG, Yuanpan ; HUANG, Zeyuan ; CHEN, Binbin ; WANG, Chao ; ZHANG, Yu</creator><creatorcontrib>ZHENG, Yuanpan ; HUANG, Zeyuan ; CHEN, Binbin ; WANG, Chao ; ZHANG, Yu</creatorcontrib><description>Fire remains a major threat to society and economic activities. Given the real-time demands of smoke detection, most research in deep learning has focused on Convolutional Neural Networks. The Real-Time Detection Transformer (RT-DETR) introduces a promising alternative for this task. This paper extends RT-DETR to address challenges such as morphological variations and interference in smoke detection by proposing the Realtime Smoke Detection Transformer (RS-DETR). RS-DETR uses smoke images with concentration data as input and employs a deformable attention module to manage morphological changes, enabling robust feature extraction. Additionally, a Cross-Scale Smoke Feature Fusion Module (CS-SFFM) is integrated to enhance detection accuracy for small and thin smoke targets through multi-scale feature resampling and fusion. To improve convergence speed and stability, Efficient Intersection over Union (EIoU) replaces Generalized Intersection over Union (GIoU) in feature scoring. The improved model achieves an average precision of 93.9% on a custom dataset, representing a 5.7% improvement over the original model, and demonstrates excellent performance across various detection scenarios.</description><identifier>ISSN: 2158-107X</identifier><identifier>EISSN: 2156-5570</identifier><identifier>DOI: 10.14569/IJACSA.2024.0151138</identifier><language>eng</language><publisher>West Yorkshire: Science and Information (SAI) Organization Limited</publisher><subject>Accuracy ; Artificial neural networks ; Codes ; Computer science ; Datasets ; Deep learning ; Economic activity ; Feature extraction ; Formability ; Machine learning ; Modules ; Morphology ; Optimization ; Real time ; Resampling ; Smoke ; Smoke detectors ; Target detection</subject><ispartof>International journal of advanced computer science & applications, 2024-01, Vol.15 (11)</ispartof><rights>2024. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>ZHENG, Yuanpan</creatorcontrib><creatorcontrib>HUANG, Zeyuan</creatorcontrib><creatorcontrib>CHEN, Binbin</creatorcontrib><creatorcontrib>WANG, Chao</creatorcontrib><creatorcontrib>ZHANG, Yu</creatorcontrib><title>Improved Real-Time Smoke Detection Model Based on RT-DETR</title><title>International journal of advanced computer science & applications</title><description>Fire remains a major threat to society and economic activities. Given the real-time demands of smoke detection, most research in deep learning has focused on Convolutional Neural Networks. The Real-Time Detection Transformer (RT-DETR) introduces a promising alternative for this task. This paper extends RT-DETR to address challenges such as morphological variations and interference in smoke detection by proposing the Realtime Smoke Detection Transformer (RS-DETR). RS-DETR uses smoke images with concentration data as input and employs a deformable attention module to manage morphological changes, enabling robust feature extraction. Additionally, a Cross-Scale Smoke Feature Fusion Module (CS-SFFM) is integrated to enhance detection accuracy for small and thin smoke targets through multi-scale feature resampling and fusion. To improve convergence speed and stability, Efficient Intersection over Union (EIoU) replaces Generalized Intersection over Union (GIoU) in feature scoring. The improved model achieves an average precision of 93.9% on a custom dataset, representing a 5.7% improvement over the original model, and demonstrates excellent performance across various detection scenarios.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Codes</subject><subject>Computer science</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Economic activity</subject><subject>Feature extraction</subject><subject>Formability</subject><subject>Machine learning</subject><subject>Modules</subject><subject>Morphology</subject><subject>Optimization</subject><subject>Real time</subject><subject>Resampling</subject><subject>Smoke</subject><subject>Smoke detectors</subject><subject>Target detection</subject><issn>2158-107X</issn><issn>2156-5570</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkE1Lw0AQhhdRsNT-Aw8Bz1t39ivZY21rrVSENIK3ZTc7gdamqdlU8N8b285l5oWHmeEh5B7YGKTS5nH5OpmuJ2POuBwzUAAiuyIDDkpTpVJ2fZozCiz9vCWjGLesL2G4zsSAmGV9aJsfDEmObkeLTY3Jum6-MJlhh2W3afbJWxNwlzy52FN9zAs6mxf5Hbmp3C7i6NKH5ON5Xkxf6Op9sZxOVrTkTHbUQ1lxHbjWPJRcsVR7z4PnFbrgPXjlvTMyFb4SGAxzGYI2RkvjWaaZBjEkD-e9_Z_fR4yd3TbHdt-ftAJkarSCTPWUPFNl28TYYmUP7aZ27a8FZk-e7NmT_fdkL57EHx0lWRI</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>ZHENG, Yuanpan</creator><creator>HUANG, Zeyuan</creator><creator>CHEN, Binbin</creator><creator>WANG, Chao</creator><creator>ZHANG, Yu</creator><general>Science and Information (SAI) Organization Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20240101</creationdate><title>Improved Real-Time Smoke Detection Model Based on RT-DETR</title><author>ZHENG, Yuanpan ; HUANG, Zeyuan ; CHEN, Binbin ; WANG, Chao ; ZHANG, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-b1cf26d2662dc25076bb2db2feadbb1b5bba9473bf3ed90a8e1699649b0860613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Codes</topic><topic>Computer science</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Economic activity</topic><topic>Feature extraction</topic><topic>Formability</topic><topic>Machine learning</topic><topic>Modules</topic><topic>Morphology</topic><topic>Optimization</topic><topic>Real time</topic><topic>Resampling</topic><topic>Smoke</topic><topic>Smoke detectors</topic><topic>Target detection</topic><toplevel>online_resources</toplevel><creatorcontrib>ZHENG, Yuanpan</creatorcontrib><creatorcontrib>HUANG, Zeyuan</creatorcontrib><creatorcontrib>CHEN, Binbin</creatorcontrib><creatorcontrib>WANG, Chao</creatorcontrib><creatorcontrib>ZHANG, Yu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of advanced computer science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZHENG, Yuanpan</au><au>HUANG, Zeyuan</au><au>CHEN, Binbin</au><au>WANG, Chao</au><au>ZHANG, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Real-Time Smoke Detection Model Based on RT-DETR</atitle><jtitle>International journal of advanced computer science & applications</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>15</volume><issue>11</issue><issn>2158-107X</issn><eissn>2156-5570</eissn><abstract>Fire remains a major threat to society and economic activities. Given the real-time demands of smoke detection, most research in deep learning has focused on Convolutional Neural Networks. The Real-Time Detection Transformer (RT-DETR) introduces a promising alternative for this task. This paper extends RT-DETR to address challenges such as morphological variations and interference in smoke detection by proposing the Realtime Smoke Detection Transformer (RS-DETR). RS-DETR uses smoke images with concentration data as input and employs a deformable attention module to manage morphological changes, enabling robust feature extraction. Additionally, a Cross-Scale Smoke Feature Fusion Module (CS-SFFM) is integrated to enhance detection accuracy for small and thin smoke targets through multi-scale feature resampling and fusion. To improve convergence speed and stability, Efficient Intersection over Union (EIoU) replaces Generalized Intersection over Union (GIoU) in feature scoring. The improved model achieves an average precision of 93.9% on a custom dataset, representing a 5.7% improvement over the original model, and demonstrates excellent performance across various detection scenarios.</abstract><cop>West Yorkshire</cop><pub>Science and Information (SAI) Organization Limited</pub><doi>10.14569/IJACSA.2024.0151138</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-107X |
ispartof | International journal of advanced computer science & applications, 2024-01, Vol.15 (11) |
issn | 2158-107X 2156-5570 |
language | eng |
recordid | cdi_proquest_journals_3147965185 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Artificial neural networks Codes Computer science Datasets Deep learning Economic activity Feature extraction Formability Machine learning Modules Morphology Optimization Real time Resampling Smoke Smoke detectors Target detection |
title | Improved Real-Time Smoke Detection Model Based on RT-DETR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Real-Time%20Smoke%20Detection%20Model%20Based%20on%20RT-DETR&rft.jtitle=International%20journal%20of%20advanced%20computer%20science%20&%20applications&rft.au=ZHENG,%20Yuanpan&rft.date=2024-01-01&rft.volume=15&rft.issue=11&rft.issn=2158-107X&rft.eissn=2156-5570&rft_id=info:doi/10.14569/IJACSA.2024.0151138&rft_dat=%3Cproquest_cross%3E3147965185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147965185&rft_id=info:pmid/&rfr_iscdi=true |