A cellular goore game-based algorithm for finding the shortest path in stochastic multi-layer graphs

The shortest path problem in stochastic graphs has been extensively studied, with numerous algorithms proposed using various learning automata models. However, the dynamic nature, diverse individual characteristics, and inherent uncertainties of social interactions necessitate the adoption of stocha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2025, Vol.81 (1)
Hauptverfasser: Khomami, Mohammad Mehdi Daliri, Meybodi, Mohammad Reza, Rezvanian, Alireza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The Journal of supercomputing
container_volume 81
creator Khomami, Mohammad Mehdi Daliri
Meybodi, Mohammad Reza
Rezvanian, Alireza
description The shortest path problem in stochastic graphs has been extensively studied, with numerous algorithms proposed using various learning automata models. However, the dynamic nature, diverse individual characteristics, and inherent uncertainties of social interactions necessitate the adoption of stochastic multi-layer social network modeling. This approach provides deeper insights into the complex relationships within social networks. When formulated as a stochastic multi-layer graph, key elements such as the shortest path require redefinition to account for these complexities. This paper explores the shortest path problem in stochastic multi-layer graphs and introduces a novel algorithm based on the Cellular Goore Game (CGG) to address this challenge. The proposed CGG-based algorithm leverages learning automata and extensive edge sampling to determine the optimal path efficiently. By integrating learning automata and selectively sampling from relevant sections of the graph, the algorithm significantly reduces computational complexity. Experimental results on stochastic multi-layer graphs highlight the effectiveness of the proposed algorithm, demonstrating substantial improvements across multiple metrics, including sampling ratio, shortest path ratio, average iterations, and convergence rate.
doi_str_mv 10.1007/s11227-024-06786-3
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_3147963740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147963740</sourcerecordid><originalsourceid>FETCH-LOGICAL-p723-50e92e21c0cade847b1d83190eda228c6ce4988bb9b4b8e39f5768b0b5088e343</originalsourceid><addsrcrecordid>eNpFkE1LxDAQhoMouK7-AU8Bz9HJR5v0uCx-wYKXvZeknX4sbVOT9OC_t7qCp2Hg4X1nHkLuOTxyAP0UORdCMxCKQa5NzuQF2fBMSwbKqEuygUIAM5kS1-QmxhMAKKnlhtQ7WuEwLIMNtPU-IG3tiMzZiDW1Q-tDn7qRNj7Qpp_qfmpp6pDGzoeEMdHZpo72E43JV52Nqa_ouAypZ4P9wjUy2LmLt-SqsUPEu7-5JceX5-P-jR0-Xt_3uwObtZAsAywECl5BZWs0SjteG8kLwNoKYaq8QlUY41zhlDMoiybTuXHgMjDrquSWPJxj5-A_l_W68uSXMK2NpeRKF7nUClZKnqk4h_UdDP8Uh_LHZnm2Wa42y1-bpZTfFblorw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147963740</pqid></control><display><type>article</type><title>A cellular goore game-based algorithm for finding the shortest path in stochastic multi-layer graphs</title><source>SpringerLink Journals</source><creator>Khomami, Mohammad Mehdi Daliri ; Meybodi, Mohammad Reza ; Rezvanian, Alireza</creator><creatorcontrib>Khomami, Mohammad Mehdi Daliri ; Meybodi, Mohammad Reza ; Rezvanian, Alireza</creatorcontrib><description>The shortest path problem in stochastic graphs has been extensively studied, with numerous algorithms proposed using various learning automata models. However, the dynamic nature, diverse individual characteristics, and inherent uncertainties of social interactions necessitate the adoption of stochastic multi-layer social network modeling. This approach provides deeper insights into the complex relationships within social networks. When formulated as a stochastic multi-layer graph, key elements such as the shortest path require redefinition to account for these complexities. This paper explores the shortest path problem in stochastic multi-layer graphs and introduces a novel algorithm based on the Cellular Goore Game (CGG) to address this challenge. The proposed CGG-based algorithm leverages learning automata and extensive edge sampling to determine the optimal path efficiently. By integrating learning automata and selectively sampling from relevant sections of the graph, the algorithm significantly reduces computational complexity. Experimental results on stochastic multi-layer graphs highlight the effectiveness of the proposed algorithm, demonstrating substantial improvements across multiple metrics, including sampling ratio, shortest path ratio, average iterations, and convergence rate.</description><identifier>ISSN: 0920-8542</identifier><identifier>EISSN: 1573-0484</identifier><identifier>DOI: 10.1007/s11227-024-06786-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Compilers ; Complexity ; Computer Science ; Graphs ; Interpreters ; Machine learning ; Multilayers ; Processor Architectures ; Programming Languages ; Sampling ; Shortest-path problems ; Social networks</subject><ispartof>The Journal of supercomputing, 2025, Vol.81 (1)</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11227-024-06786-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11227-024-06786-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Khomami, Mohammad Mehdi Daliri</creatorcontrib><creatorcontrib>Meybodi, Mohammad Reza</creatorcontrib><creatorcontrib>Rezvanian, Alireza</creatorcontrib><title>A cellular goore game-based algorithm for finding the shortest path in stochastic multi-layer graphs</title><title>The Journal of supercomputing</title><addtitle>J Supercomput</addtitle><description>The shortest path problem in stochastic graphs has been extensively studied, with numerous algorithms proposed using various learning automata models. However, the dynamic nature, diverse individual characteristics, and inherent uncertainties of social interactions necessitate the adoption of stochastic multi-layer social network modeling. This approach provides deeper insights into the complex relationships within social networks. When formulated as a stochastic multi-layer graph, key elements such as the shortest path require redefinition to account for these complexities. This paper explores the shortest path problem in stochastic multi-layer graphs and introduces a novel algorithm based on the Cellular Goore Game (CGG) to address this challenge. The proposed CGG-based algorithm leverages learning automata and extensive edge sampling to determine the optimal path efficiently. By integrating learning automata and selectively sampling from relevant sections of the graph, the algorithm significantly reduces computational complexity. Experimental results on stochastic multi-layer graphs highlight the effectiveness of the proposed algorithm, demonstrating substantial improvements across multiple metrics, including sampling ratio, shortest path ratio, average iterations, and convergence rate.</description><subject>Algorithms</subject><subject>Compilers</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Graphs</subject><subject>Interpreters</subject><subject>Machine learning</subject><subject>Multilayers</subject><subject>Processor Architectures</subject><subject>Programming Languages</subject><subject>Sampling</subject><subject>Shortest-path problems</subject><subject>Social networks</subject><issn>0920-8542</issn><issn>1573-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkE1LxDAQhoMouK7-AU8Bz9HJR5v0uCx-wYKXvZeknX4sbVOT9OC_t7qCp2Hg4X1nHkLuOTxyAP0UORdCMxCKQa5NzuQF2fBMSwbKqEuygUIAM5kS1-QmxhMAKKnlhtQ7WuEwLIMNtPU-IG3tiMzZiDW1Q-tDn7qRNj7Qpp_qfmpp6pDGzoeEMdHZpo72E43JV52Nqa_ouAypZ4P9wjUy2LmLt-SqsUPEu7-5JceX5-P-jR0-Xt_3uwObtZAsAywECl5BZWs0SjteG8kLwNoKYaq8QlUY41zhlDMoiybTuXHgMjDrquSWPJxj5-A_l_W68uSXMK2NpeRKF7nUClZKnqk4h_UdDP8Uh_LHZnm2Wa42y1-bpZTfFblorw</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Khomami, Mohammad Mehdi Daliri</creator><creator>Meybodi, Mohammad Reza</creator><creator>Rezvanian, Alireza</creator><general>Springer US</general><general>Springer Nature B.V</general><scope/></search><sort><creationdate>2025</creationdate><title>A cellular goore game-based algorithm for finding the shortest path in stochastic multi-layer graphs</title><author>Khomami, Mohammad Mehdi Daliri ; Meybodi, Mohammad Reza ; Rezvanian, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p723-50e92e21c0cade847b1d83190eda228c6ce4988bb9b4b8e39f5768b0b5088e343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Compilers</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Graphs</topic><topic>Interpreters</topic><topic>Machine learning</topic><topic>Multilayers</topic><topic>Processor Architectures</topic><topic>Programming Languages</topic><topic>Sampling</topic><topic>Shortest-path problems</topic><topic>Social networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khomami, Mohammad Mehdi Daliri</creatorcontrib><creatorcontrib>Meybodi, Mohammad Reza</creatorcontrib><creatorcontrib>Rezvanian, Alireza</creatorcontrib><jtitle>The Journal of supercomputing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khomami, Mohammad Mehdi Daliri</au><au>Meybodi, Mohammad Reza</au><au>Rezvanian, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A cellular goore game-based algorithm for finding the shortest path in stochastic multi-layer graphs</atitle><jtitle>The Journal of supercomputing</jtitle><stitle>J Supercomput</stitle><date>2025</date><risdate>2025</risdate><volume>81</volume><issue>1</issue><issn>0920-8542</issn><eissn>1573-0484</eissn><abstract>The shortest path problem in stochastic graphs has been extensively studied, with numerous algorithms proposed using various learning automata models. However, the dynamic nature, diverse individual characteristics, and inherent uncertainties of social interactions necessitate the adoption of stochastic multi-layer social network modeling. This approach provides deeper insights into the complex relationships within social networks. When formulated as a stochastic multi-layer graph, key elements such as the shortest path require redefinition to account for these complexities. This paper explores the shortest path problem in stochastic multi-layer graphs and introduces a novel algorithm based on the Cellular Goore Game (CGG) to address this challenge. The proposed CGG-based algorithm leverages learning automata and extensive edge sampling to determine the optimal path efficiently. By integrating learning automata and selectively sampling from relevant sections of the graph, the algorithm significantly reduces computational complexity. Experimental results on stochastic multi-layer graphs highlight the effectiveness of the proposed algorithm, demonstrating substantial improvements across multiple metrics, including sampling ratio, shortest path ratio, average iterations, and convergence rate.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11227-024-06786-3</doi></addata></record>
fulltext fulltext
identifier ISSN: 0920-8542
ispartof The Journal of supercomputing, 2025, Vol.81 (1)
issn 0920-8542
1573-0484
language eng
recordid cdi_proquest_journals_3147963740
source SpringerLink Journals
subjects Algorithms
Compilers
Complexity
Computer Science
Graphs
Interpreters
Machine learning
Multilayers
Processor Architectures
Programming Languages
Sampling
Shortest-path problems
Social networks
title A cellular goore game-based algorithm for finding the shortest path in stochastic multi-layer graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20cellular%20goore%20game-based%20algorithm%20for%20finding%20the%20shortest%20path%20in%20stochastic%20multi-layer%20graphs&rft.jtitle=The%20Journal%20of%20supercomputing&rft.au=Khomami,%20Mohammad%20Mehdi%20Daliri&rft.date=2025&rft.volume=81&rft.issue=1&rft.issn=0920-8542&rft.eissn=1573-0484&rft_id=info:doi/10.1007/s11227-024-06786-3&rft_dat=%3Cproquest_sprin%3E3147963740%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147963740&rft_id=info:pmid/&rfr_iscdi=true