LiTFSI salt concentration effect for well‐balanced ion transport and physical properties in nanocellulose‐reinforced PEO#600 solid electrolytes
Poly(ethylene oxide) (PEO) with an oxygen group serves as a reactive site for the pathway of lithium‐ion transport. Reducing the PEO crystal domain in solid electrolytes is an extremely efficient approach for enhancing the mobility of ions. The present study applied various EO/Li molar ratios to mod...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2025-02, Vol.142 (5), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Journal of applied polymer science |
container_volume | 142 |
creator | Sabrina, Qolby Yulianti, Riyani Tri Sundari, Suci Subhan, Achmad Majid, Nurhalis Handayani, Aniek Sri Ratnawati Sugawara, Akihide Uyama, Hiroshi Yudianti, Rike |
description | Poly(ethylene oxide) (PEO) with an oxygen group serves as a reactive site for the pathway of lithium‐ion transport. Reducing the PEO crystal domain in solid electrolytes is an extremely efficient approach for enhancing the mobility of ions. The present study applied various EO/Li molar ratios to modify the physical and electrochemical properties of PEO nanocomposite reinforced by nanocellulose. An elevated lithium salt concentration causes a gradual decline in crystallinity and mechanical strength. The electrochemical performance of the 13 EO/Li molar ratio voltammogram and charge–discharge shows efficient Li‐ion transport with 5.6 × 10−4 S/cm conductivity at room temperature and 131 mA h g−1 initial discharge capacity. The shifting glass transition and melting point at lower temperatures (−40.5 to −44.5°C and 45.3–43.8°C) suggest greater ion mobility throughout the large non‐crystalline structure. Lithium ions are limited by membrane weakening and re‐crystallization caused by high lithium salt (EM_11) concentrations. EM_13 has the highest specific capacity, operating voltage, and lithium transfer number depends on balanced electrochemical performance and physical features. XPS surface chemistry analysis explains LiF, Li2CO3, and Li2O solid electrolyte interfaces (SEI) in EM samples. A lower Li2O (11.62 at.%) than LiF (38.4 at.%) after cycling enhances Li‐ion diffusion and cell reversibility.
PEO #600 reinforced with nano‐cellulose solid electrolytes. |
doi_str_mv | 10.1002/app.56427 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3147748848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147748848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1877-4680eb9c3d83767e9adf0d31f81f6b9cc34e370a1be0c2ba13aa34046f064ff3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsH3yDQk4e2ySbdzR5LqVootGDvS5qdYEpM1mRL2ZuPIPiGPomp69XTwMz3_zPzI3RPyYQSkk1l00xmOc-KCzSgpCzGPM_EJRqkGR2Lspxdo5sYD4RQOiP5AH2tze7xZYWjtC1W3ilwbZCt8Q6D1qBarH3AJ7D2--NzL61MRI3P44S52PjQYulq3Lx20ShpcRN8A6E1ELFx2EnnVRIfrY-QHAIYlwzPHtvlZpQTgqO3psZg067gbddCvEVXWtoId391iHaPy93iebzePK0W8_VYUVGcPxME9qVitWBFXkApa01qRrWgOk99xTiwgki6B6KyvaRMSsYJzzXJudZsiEa9bTr5_QixrQ7-GFzaWDHKi4ILwUWiHnpKBR9jAF01wbzJ0FWUVOfIqxR59Rt5Yqc9ezIWuv_Bar7d9oofmNuHoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147748848</pqid></control><display><type>article</type><title>LiTFSI salt concentration effect for well‐balanced ion transport and physical properties in nanocellulose‐reinforced PEO#600 solid electrolytes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sabrina, Qolby ; Yulianti, Riyani Tri ; Sundari, Suci ; Subhan, Achmad ; Majid, Nurhalis ; Handayani, Aniek Sri ; Ratnawati ; Sugawara, Akihide ; Uyama, Hiroshi ; Yudianti, Rike</creator><creatorcontrib>Sabrina, Qolby ; Yulianti, Riyani Tri ; Sundari, Suci ; Subhan, Achmad ; Majid, Nurhalis ; Handayani, Aniek Sri ; Ratnawati ; Sugawara, Akihide ; Uyama, Hiroshi ; Yudianti, Rike</creatorcontrib><description>Poly(ethylene oxide) (PEO) with an oxygen group serves as a reactive site for the pathway of lithium‐ion transport. Reducing the PEO crystal domain in solid electrolytes is an extremely efficient approach for enhancing the mobility of ions. The present study applied various EO/Li molar ratios to modify the physical and electrochemical properties of PEO nanocomposite reinforced by nanocellulose. An elevated lithium salt concentration causes a gradual decline in crystallinity and mechanical strength. The electrochemical performance of the 13 EO/Li molar ratio voltammogram and charge–discharge shows efficient Li‐ion transport with 5.6 × 10−4 S/cm conductivity at room temperature and 131 mA h g−1 initial discharge capacity. The shifting glass transition and melting point at lower temperatures (−40.5 to −44.5°C and 45.3–43.8°C) suggest greater ion mobility throughout the large non‐crystalline structure. Lithium ions are limited by membrane weakening and re‐crystallization caused by high lithium salt (EM_11) concentrations. EM_13 has the highest specific capacity, operating voltage, and lithium transfer number depends on balanced electrochemical performance and physical features. XPS surface chemistry analysis explains LiF, Li2CO3, and Li2O solid electrolyte interfaces (SEI) in EM samples. A lower Li2O (11.62 at.%) than LiF (38.4 at.%) after cycling enhances Li‐ion diffusion and cell reversibility.
PEO #600 reinforced with nano‐cellulose solid electrolytes.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.56427</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>cellulose ; Crystallization ; Discharge ; Electrochemical analysis ; Electrolytes ; Electrons ; Ethylene oxide ; glass transition ; Glass transition temperature ; Ion diffusion ; Ion transport ; Ionic mobility ; Lithium ; Lithium carbonate ; Lithium fluoride ; Lithium ions ; Lithium oxides ; Li‐ion batteries ; Melting points ; Molten salt electrolytes ; Nanocomposites ; Physical properties ; Polyethylene oxide ; polymer electrolytes ; Room temperature ; Solid electrolytes ; X ray photoelectron spectroscopy</subject><ispartof>Journal of applied polymer science, 2025-02, Vol.142 (5), p.n/a</ispartof><rights>2024 Wiley Periodicals LLC.</rights><rights>2025 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1877-4680eb9c3d83767e9adf0d31f81f6b9cc34e370a1be0c2ba13aa34046f064ff3</cites><orcidid>0000-0002-7732-5087</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.56427$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.56427$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Sabrina, Qolby</creatorcontrib><creatorcontrib>Yulianti, Riyani Tri</creatorcontrib><creatorcontrib>Sundari, Suci</creatorcontrib><creatorcontrib>Subhan, Achmad</creatorcontrib><creatorcontrib>Majid, Nurhalis</creatorcontrib><creatorcontrib>Handayani, Aniek Sri</creatorcontrib><creatorcontrib>Ratnawati</creatorcontrib><creatorcontrib>Sugawara, Akihide</creatorcontrib><creatorcontrib>Uyama, Hiroshi</creatorcontrib><creatorcontrib>Yudianti, Rike</creatorcontrib><title>LiTFSI salt concentration effect for well‐balanced ion transport and physical properties in nanocellulose‐reinforced PEO#600 solid electrolytes</title><title>Journal of applied polymer science</title><description>Poly(ethylene oxide) (PEO) with an oxygen group serves as a reactive site for the pathway of lithium‐ion transport. Reducing the PEO crystal domain in solid electrolytes is an extremely efficient approach for enhancing the mobility of ions. The present study applied various EO/Li molar ratios to modify the physical and electrochemical properties of PEO nanocomposite reinforced by nanocellulose. An elevated lithium salt concentration causes a gradual decline in crystallinity and mechanical strength. The electrochemical performance of the 13 EO/Li molar ratio voltammogram and charge–discharge shows efficient Li‐ion transport with 5.6 × 10−4 S/cm conductivity at room temperature and 131 mA h g−1 initial discharge capacity. The shifting glass transition and melting point at lower temperatures (−40.5 to −44.5°C and 45.3–43.8°C) suggest greater ion mobility throughout the large non‐crystalline structure. Lithium ions are limited by membrane weakening and re‐crystallization caused by high lithium salt (EM_11) concentrations. EM_13 has the highest specific capacity, operating voltage, and lithium transfer number depends on balanced electrochemical performance and physical features. XPS surface chemistry analysis explains LiF, Li2CO3, and Li2O solid electrolyte interfaces (SEI) in EM samples. A lower Li2O (11.62 at.%) than LiF (38.4 at.%) after cycling enhances Li‐ion diffusion and cell reversibility.
PEO #600 reinforced with nano‐cellulose solid electrolytes.</description><subject>cellulose</subject><subject>Crystallization</subject><subject>Discharge</subject><subject>Electrochemical analysis</subject><subject>Electrolytes</subject><subject>Electrons</subject><subject>Ethylene oxide</subject><subject>glass transition</subject><subject>Glass transition temperature</subject><subject>Ion diffusion</subject><subject>Ion transport</subject><subject>Ionic mobility</subject><subject>Lithium</subject><subject>Lithium carbonate</subject><subject>Lithium fluoride</subject><subject>Lithium ions</subject><subject>Lithium oxides</subject><subject>Li‐ion batteries</subject><subject>Melting points</subject><subject>Molten salt electrolytes</subject><subject>Nanocomposites</subject><subject>Physical properties</subject><subject>Polyethylene oxide</subject><subject>polymer electrolytes</subject><subject>Room temperature</subject><subject>Solid electrolytes</subject><subject>X ray photoelectron spectroscopy</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsH3yDQk4e2ySbdzR5LqVootGDvS5qdYEpM1mRL2ZuPIPiGPomp69XTwMz3_zPzI3RPyYQSkk1l00xmOc-KCzSgpCzGPM_EJRqkGR2Lspxdo5sYD4RQOiP5AH2tze7xZYWjtC1W3ilwbZCt8Q6D1qBarH3AJ7D2--NzL61MRI3P44S52PjQYulq3Lx20ShpcRN8A6E1ELFx2EnnVRIfrY-QHAIYlwzPHtvlZpQTgqO3psZg067gbddCvEVXWtoId391iHaPy93iebzePK0W8_VYUVGcPxME9qVitWBFXkApa01qRrWgOk99xTiwgki6B6KyvaRMSsYJzzXJudZsiEa9bTr5_QixrQ7-GFzaWDHKi4ILwUWiHnpKBR9jAF01wbzJ0FWUVOfIqxR59Rt5Yqc9ezIWuv_Bar7d9oofmNuHoA</recordid><startdate>20250205</startdate><enddate>20250205</enddate><creator>Sabrina, Qolby</creator><creator>Yulianti, Riyani Tri</creator><creator>Sundari, Suci</creator><creator>Subhan, Achmad</creator><creator>Majid, Nurhalis</creator><creator>Handayani, Aniek Sri</creator><creator>Ratnawati</creator><creator>Sugawara, Akihide</creator><creator>Uyama, Hiroshi</creator><creator>Yudianti, Rike</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7732-5087</orcidid></search><sort><creationdate>20250205</creationdate><title>LiTFSI salt concentration effect for well‐balanced ion transport and physical properties in nanocellulose‐reinforced PEO#600 solid electrolytes</title><author>Sabrina, Qolby ; Yulianti, Riyani Tri ; Sundari, Suci ; Subhan, Achmad ; Majid, Nurhalis ; Handayani, Aniek Sri ; Ratnawati ; Sugawara, Akihide ; Uyama, Hiroshi ; Yudianti, Rike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1877-4680eb9c3d83767e9adf0d31f81f6b9cc34e370a1be0c2ba13aa34046f064ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>cellulose</topic><topic>Crystallization</topic><topic>Discharge</topic><topic>Electrochemical analysis</topic><topic>Electrolytes</topic><topic>Electrons</topic><topic>Ethylene oxide</topic><topic>glass transition</topic><topic>Glass transition temperature</topic><topic>Ion diffusion</topic><topic>Ion transport</topic><topic>Ionic mobility</topic><topic>Lithium</topic><topic>Lithium carbonate</topic><topic>Lithium fluoride</topic><topic>Lithium ions</topic><topic>Lithium oxides</topic><topic>Li‐ion batteries</topic><topic>Melting points</topic><topic>Molten salt electrolytes</topic><topic>Nanocomposites</topic><topic>Physical properties</topic><topic>Polyethylene oxide</topic><topic>polymer electrolytes</topic><topic>Room temperature</topic><topic>Solid electrolytes</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sabrina, Qolby</creatorcontrib><creatorcontrib>Yulianti, Riyani Tri</creatorcontrib><creatorcontrib>Sundari, Suci</creatorcontrib><creatorcontrib>Subhan, Achmad</creatorcontrib><creatorcontrib>Majid, Nurhalis</creatorcontrib><creatorcontrib>Handayani, Aniek Sri</creatorcontrib><creatorcontrib>Ratnawati</creatorcontrib><creatorcontrib>Sugawara, Akihide</creatorcontrib><creatorcontrib>Uyama, Hiroshi</creatorcontrib><creatorcontrib>Yudianti, Rike</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sabrina, Qolby</au><au>Yulianti, Riyani Tri</au><au>Sundari, Suci</au><au>Subhan, Achmad</au><au>Majid, Nurhalis</au><au>Handayani, Aniek Sri</au><au>Ratnawati</au><au>Sugawara, Akihide</au><au>Uyama, Hiroshi</au><au>Yudianti, Rike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LiTFSI salt concentration effect for well‐balanced ion transport and physical properties in nanocellulose‐reinforced PEO#600 solid electrolytes</atitle><jtitle>Journal of applied polymer science</jtitle><date>2025-02-05</date><risdate>2025</risdate><volume>142</volume><issue>5</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Poly(ethylene oxide) (PEO) with an oxygen group serves as a reactive site for the pathway of lithium‐ion transport. Reducing the PEO crystal domain in solid electrolytes is an extremely efficient approach for enhancing the mobility of ions. The present study applied various EO/Li molar ratios to modify the physical and electrochemical properties of PEO nanocomposite reinforced by nanocellulose. An elevated lithium salt concentration causes a gradual decline in crystallinity and mechanical strength. The electrochemical performance of the 13 EO/Li molar ratio voltammogram and charge–discharge shows efficient Li‐ion transport with 5.6 × 10−4 S/cm conductivity at room temperature and 131 mA h g−1 initial discharge capacity. The shifting glass transition and melting point at lower temperatures (−40.5 to −44.5°C and 45.3–43.8°C) suggest greater ion mobility throughout the large non‐crystalline structure. Lithium ions are limited by membrane weakening and re‐crystallization caused by high lithium salt (EM_11) concentrations. EM_13 has the highest specific capacity, operating voltage, and lithium transfer number depends on balanced electrochemical performance and physical features. XPS surface chemistry analysis explains LiF, Li2CO3, and Li2O solid electrolyte interfaces (SEI) in EM samples. A lower Li2O (11.62 at.%) than LiF (38.4 at.%) after cycling enhances Li‐ion diffusion and cell reversibility.
PEO #600 reinforced with nano‐cellulose solid electrolytes.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/app.56427</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7732-5087</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2025-02, Vol.142 (5), p.n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_journals_3147748848 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | cellulose Crystallization Discharge Electrochemical analysis Electrolytes Electrons Ethylene oxide glass transition Glass transition temperature Ion diffusion Ion transport Ionic mobility Lithium Lithium carbonate Lithium fluoride Lithium ions Lithium oxides Li‐ion batteries Melting points Molten salt electrolytes Nanocomposites Physical properties Polyethylene oxide polymer electrolytes Room temperature Solid electrolytes X ray photoelectron spectroscopy |
title | LiTFSI salt concentration effect for well‐balanced ion transport and physical properties in nanocellulose‐reinforced PEO#600 solid electrolytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A24%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LiTFSI%20salt%20concentration%20effect%20for%20well%E2%80%90balanced%20ion%20transport%20and%20physical%20properties%20in%20nanocellulose%E2%80%90reinforced%20PEO%23600%20solid%20electrolytes&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Sabrina,%20Qolby&rft.date=2025-02-05&rft.volume=142&rft.issue=5&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.56427&rft_dat=%3Cproquest_cross%3E3147748848%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147748848&rft_id=info:pmid/&rfr_iscdi=true |