Disk Kinematics at High Redshift: DysmalPy’s Extension to 3D Modeling and Comparison with Different Approaches
Spatially resolved emission-line kinematics are invaluable for investigating fundamental galaxy properties and have become increasingly accessible for galaxies at z ≳0.5 through sensitive near-infrared imaging spectroscopy and millimeter interferometry. Kinematic modeling is at the core of the analy...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2025-01, Vol.978 (1), p.14 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 14 |
container_title | The Astrophysical journal |
container_volume | 978 |
creator | Lee, Lilian L. Förster Schreiber, Natascha M. Price, Sedona H. Liu, Daizhong Genzel, Reinhard Davies, Ric Tacconi, Linda J. Shimizu, Taro T. Nestor Shachar, Amit Espejo Salcedo, Juan M. Pastras, Stavros Wuyts, Stijn Lutz, Dieter Renzini, Alvio Übler, Hannah Herrera-Camus, Rodrigo Sternberg, Amiel |
description | Spatially resolved emission-line kinematics are invaluable for investigating fundamental galaxy properties and have become increasingly accessible for galaxies at z ≳0.5 through sensitive near-infrared imaging spectroscopy and millimeter interferometry. Kinematic modeling is at the core of the analysis and interpretation of such data sets, which at high z present challenges due to the lower signal-to-noise ratio (S/N) and resolution compared to the data of local galaxies. We present and test the 3D fitting functionality of DysmalPy , examining how well it recovers the intrinsic disk rotation velocity and velocity dispersion, using a large suite of axisymmetric models, covering a range of galaxy properties and observational parameters typical of z ∼ 1−3 star-forming galaxies. We also compare DysmalPy ’s recovery performance to that of two other commonly used codes, GalPak 3 D and 3D Barolo , which we use in turn to create additional sets of models to benchmark DysmalPy . Over the ranges of S/N, resolution, mass, and velocity dispersion explored, the rotation velocity is accurately recovered by all tools. The velocity dispersion is recovered well at high S/N, but the impact of methodology differences is more apparent. In particular, template differences for parametric tools and S/N sensitivity for the nonparametric tool can lead to differences of up to a factor of 2. Our tests highlight and the importance of deep, high-resolution data and the need for careful consideration of (i) the choice of priors (parametric approaches); and (ii) the masking (all approaches); and (iii), more generally, the evaluating of the suitability of each approach to the specific data at hand. This paper accompanies the public release of DysmalPy . |
doi_str_mv | 10.3847/1538-4357/ad90b5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3147694004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_600b88ae076c4b0fa1176047c7e11dac</doaj_id><sourcerecordid>3147694004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-c58289d5e758827220d2472773439b3a02607bfb660f6327d42eb20812b12e5d3</originalsourceid><addsrcrecordid>eNp1UU1vEzEQtSqQGlruHC1x7dLxx9re3qqk0IpWIAQSN8u79iYOyXqxXbW58Tf69_pL6rBVOXEazcybN2_mIfSOwAemuDwlNVMVZ7U8NbaBtj5As5fSKzQDAF4JJn8eojcprfcpbZoZGhc-_cKf_eC2JvsuYZPxpV-u8Ddn08r3-QwvdmlrNl93j38eEr64z25IPgw4B8wW-CZYt_HDEpvB4nnYjib6VLp3Pq_wwve9i27I-HwcYzDdyqVj9Lo3m-TePscj9OPjxff5ZXX95dPV_Py66oquXHW1oqqxtZO1UlRSCpZySaVknDUtM0AFyLZvhYBeMCotp66loAhtCXW1ZUfoauK1waz1GP3WxJ0Oxuu_hRCX2sRy8cZpAdAqZRxI0fEWekOIFMBlJx0h1nSF6_3EVY74fetS1utwG4ciXzPCpWh4eWdBwYTqYkgpuv5lKwG990jvDdF7Q_TkURk5mUZ8GP9x_hf-BDAEkZg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147694004</pqid></control><display><type>article</type><title>Disk Kinematics at High Redshift: DysmalPy’s Extension to 3D Modeling and Comparison with Different Approaches</title><source>DOAJ Directory of Open Access Journals</source><source>IOP Publishing</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Lee, Lilian L. ; Förster Schreiber, Natascha M. ; Price, Sedona H. ; Liu, Daizhong ; Genzel, Reinhard ; Davies, Ric ; Tacconi, Linda J. ; Shimizu, Taro T. ; Nestor Shachar, Amit ; Espejo Salcedo, Juan M. ; Pastras, Stavros ; Wuyts, Stijn ; Lutz, Dieter ; Renzini, Alvio ; Übler, Hannah ; Herrera-Camus, Rodrigo ; Sternberg, Amiel</creator><creatorcontrib>Lee, Lilian L. ; Förster Schreiber, Natascha M. ; Price, Sedona H. ; Liu, Daizhong ; Genzel, Reinhard ; Davies, Ric ; Tacconi, Linda J. ; Shimizu, Taro T. ; Nestor Shachar, Amit ; Espejo Salcedo, Juan M. ; Pastras, Stavros ; Wuyts, Stijn ; Lutz, Dieter ; Renzini, Alvio ; Übler, Hannah ; Herrera-Camus, Rodrigo ; Sternberg, Amiel</creatorcontrib><description>Spatially resolved emission-line kinematics are invaluable for investigating fundamental galaxy properties and have become increasingly accessible for galaxies at z ≳0.5 through sensitive near-infrared imaging spectroscopy and millimeter interferometry. Kinematic modeling is at the core of the analysis and interpretation of such data sets, which at high z present challenges due to the lower signal-to-noise ratio (S/N) and resolution compared to the data of local galaxies. We present and test the 3D fitting functionality of DysmalPy , examining how well it recovers the intrinsic disk rotation velocity and velocity dispersion, using a large suite of axisymmetric models, covering a range of galaxy properties and observational parameters typical of z ∼ 1−3 star-forming galaxies. We also compare DysmalPy ’s recovery performance to that of two other commonly used codes, GalPak 3 D and 3D Barolo , which we use in turn to create additional sets of models to benchmark DysmalPy . Over the ranges of S/N, resolution, mass, and velocity dispersion explored, the rotation velocity is accurately recovered by all tools. The velocity dispersion is recovered well at high S/N, but the impact of methodology differences is more apparent. In particular, template differences for parametric tools and S/N sensitivity for the nonparametric tool can lead to differences of up to a factor of 2. Our tests highlight and the importance of deep, high-resolution data and the need for careful consideration of (i) the choice of priors (parametric approaches); and (ii) the masking (all approaches); and (iii), more generally, the evaluating of the suitability of each approach to the specific data at hand. This paper accompanies the public release of DysmalPy .</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad90b5</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astronomical models ; Astronomy data analysis ; Astronomy data modeling ; Dispersion ; Emission analysis ; Galactic rotation ; Galaxies ; Galaxy dynamics ; Galaxy kinematics ; High-redshift galaxies ; Infrared analysis ; Infrared imaging ; Interferometry ; Kinematics ; Near infrared radiation ; Parameter sensitivity ; Red shift ; Rotating disks ; Signal to noise ratio ; Spectroscopy ; Star formation ; Stars & galaxies ; Velocity</subject><ispartof>The Astrophysical journal, 2025-01, Vol.978 (1), p.14</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c299t-c58289d5e758827220d2472773439b3a02607bfb660f6327d42eb20812b12e5d3</cites><orcidid>0000-0002-2125-4670 ; 0000-0002-2767-9653 ; 0000-0002-1485-9401 ; 0000-0001-6703-4676 ; 0000-0002-2775-0595 ; 0000-0002-7093-7355 ; 0000-0003-1785-1357 ; 0000-0003-0291-9582 ; 0000-0003-4891-0794 ; 0000-0003-4264-3381 ; 0000-0001-5065-9530 ; 0000-0003-3735-1931 ; 0000-0001-7457-4371 ; 0000-0001-9773-7479 ; 0000-0002-0108-4176 ; 0000-0003-4949-7217 ; 0009-0009-0472-6080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad90b5/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2100,27922,27923,38888,53865</link.rule.ids></links><search><creatorcontrib>Lee, Lilian L.</creatorcontrib><creatorcontrib>Förster Schreiber, Natascha M.</creatorcontrib><creatorcontrib>Price, Sedona H.</creatorcontrib><creatorcontrib>Liu, Daizhong</creatorcontrib><creatorcontrib>Genzel, Reinhard</creatorcontrib><creatorcontrib>Davies, Ric</creatorcontrib><creatorcontrib>Tacconi, Linda J.</creatorcontrib><creatorcontrib>Shimizu, Taro T.</creatorcontrib><creatorcontrib>Nestor Shachar, Amit</creatorcontrib><creatorcontrib>Espejo Salcedo, Juan M.</creatorcontrib><creatorcontrib>Pastras, Stavros</creatorcontrib><creatorcontrib>Wuyts, Stijn</creatorcontrib><creatorcontrib>Lutz, Dieter</creatorcontrib><creatorcontrib>Renzini, Alvio</creatorcontrib><creatorcontrib>Übler, Hannah</creatorcontrib><creatorcontrib>Herrera-Camus, Rodrigo</creatorcontrib><creatorcontrib>Sternberg, Amiel</creatorcontrib><title>Disk Kinematics at High Redshift: DysmalPy’s Extension to 3D Modeling and Comparison with Different Approaches</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Spatially resolved emission-line kinematics are invaluable for investigating fundamental galaxy properties and have become increasingly accessible for galaxies at z ≳0.5 through sensitive near-infrared imaging spectroscopy and millimeter interferometry. Kinematic modeling is at the core of the analysis and interpretation of such data sets, which at high z present challenges due to the lower signal-to-noise ratio (S/N) and resolution compared to the data of local galaxies. We present and test the 3D fitting functionality of DysmalPy , examining how well it recovers the intrinsic disk rotation velocity and velocity dispersion, using a large suite of axisymmetric models, covering a range of galaxy properties and observational parameters typical of z ∼ 1−3 star-forming galaxies. We also compare DysmalPy ’s recovery performance to that of two other commonly used codes, GalPak 3 D and 3D Barolo , which we use in turn to create additional sets of models to benchmark DysmalPy . Over the ranges of S/N, resolution, mass, and velocity dispersion explored, the rotation velocity is accurately recovered by all tools. The velocity dispersion is recovered well at high S/N, but the impact of methodology differences is more apparent. In particular, template differences for parametric tools and S/N sensitivity for the nonparametric tool can lead to differences of up to a factor of 2. Our tests highlight and the importance of deep, high-resolution data and the need for careful consideration of (i) the choice of priors (parametric approaches); and (ii) the masking (all approaches); and (iii), more generally, the evaluating of the suitability of each approach to the specific data at hand. This paper accompanies the public release of DysmalPy .</description><subject>Astronomical models</subject><subject>Astronomy data analysis</subject><subject>Astronomy data modeling</subject><subject>Dispersion</subject><subject>Emission analysis</subject><subject>Galactic rotation</subject><subject>Galaxies</subject><subject>Galaxy dynamics</subject><subject>Galaxy kinematics</subject><subject>High-redshift galaxies</subject><subject>Infrared analysis</subject><subject>Infrared imaging</subject><subject>Interferometry</subject><subject>Kinematics</subject><subject>Near infrared radiation</subject><subject>Parameter sensitivity</subject><subject>Red shift</subject><subject>Rotating disks</subject><subject>Signal to noise ratio</subject><subject>Spectroscopy</subject><subject>Star formation</subject><subject>Stars & galaxies</subject><subject>Velocity</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1UU1vEzEQtSqQGlruHC1x7dLxx9re3qqk0IpWIAQSN8u79iYOyXqxXbW58Tf69_pL6rBVOXEazcybN2_mIfSOwAemuDwlNVMVZ7U8NbaBtj5As5fSKzQDAF4JJn8eojcprfcpbZoZGhc-_cKf_eC2JvsuYZPxpV-u8Ddn08r3-QwvdmlrNl93j38eEr64z25IPgw4B8wW-CZYt_HDEpvB4nnYjib6VLp3Pq_wwve9i27I-HwcYzDdyqVj9Lo3m-TePscj9OPjxff5ZXX95dPV_Py66oquXHW1oqqxtZO1UlRSCpZySaVknDUtM0AFyLZvhYBeMCotp66loAhtCXW1ZUfoauK1waz1GP3WxJ0Oxuu_hRCX2sRy8cZpAdAqZRxI0fEWekOIFMBlJx0h1nSF6_3EVY74fetS1utwG4ciXzPCpWh4eWdBwYTqYkgpuv5lKwG990jvDdF7Q_TkURk5mUZ8GP9x_hf-BDAEkZg</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Lee, Lilian L.</creator><creator>Förster Schreiber, Natascha M.</creator><creator>Price, Sedona H.</creator><creator>Liu, Daizhong</creator><creator>Genzel, Reinhard</creator><creator>Davies, Ric</creator><creator>Tacconi, Linda J.</creator><creator>Shimizu, Taro T.</creator><creator>Nestor Shachar, Amit</creator><creator>Espejo Salcedo, Juan M.</creator><creator>Pastras, Stavros</creator><creator>Wuyts, Stijn</creator><creator>Lutz, Dieter</creator><creator>Renzini, Alvio</creator><creator>Übler, Hannah</creator><creator>Herrera-Camus, Rodrigo</creator><creator>Sternberg, Amiel</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2125-4670</orcidid><orcidid>https://orcid.org/0000-0002-2767-9653</orcidid><orcidid>https://orcid.org/0000-0002-1485-9401</orcidid><orcidid>https://orcid.org/0000-0001-6703-4676</orcidid><orcidid>https://orcid.org/0000-0002-2775-0595</orcidid><orcidid>https://orcid.org/0000-0002-7093-7355</orcidid><orcidid>https://orcid.org/0000-0003-1785-1357</orcidid><orcidid>https://orcid.org/0000-0003-0291-9582</orcidid><orcidid>https://orcid.org/0000-0003-4891-0794</orcidid><orcidid>https://orcid.org/0000-0003-4264-3381</orcidid><orcidid>https://orcid.org/0000-0001-5065-9530</orcidid><orcidid>https://orcid.org/0000-0003-3735-1931</orcidid><orcidid>https://orcid.org/0000-0001-7457-4371</orcidid><orcidid>https://orcid.org/0000-0001-9773-7479</orcidid><orcidid>https://orcid.org/0000-0002-0108-4176</orcidid><orcidid>https://orcid.org/0000-0003-4949-7217</orcidid><orcidid>https://orcid.org/0009-0009-0472-6080</orcidid></search><sort><creationdate>20250101</creationdate><title>Disk Kinematics at High Redshift: DysmalPy’s Extension to 3D Modeling and Comparison with Different Approaches</title><author>Lee, Lilian L. ; Förster Schreiber, Natascha M. ; Price, Sedona H. ; Liu, Daizhong ; Genzel, Reinhard ; Davies, Ric ; Tacconi, Linda J. ; Shimizu, Taro T. ; Nestor Shachar, Amit ; Espejo Salcedo, Juan M. ; Pastras, Stavros ; Wuyts, Stijn ; Lutz, Dieter ; Renzini, Alvio ; Übler, Hannah ; Herrera-Camus, Rodrigo ; Sternberg, Amiel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-c58289d5e758827220d2472773439b3a02607bfb660f6327d42eb20812b12e5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Astronomical models</topic><topic>Astronomy data analysis</topic><topic>Astronomy data modeling</topic><topic>Dispersion</topic><topic>Emission analysis</topic><topic>Galactic rotation</topic><topic>Galaxies</topic><topic>Galaxy dynamics</topic><topic>Galaxy kinematics</topic><topic>High-redshift galaxies</topic><topic>Infrared analysis</topic><topic>Infrared imaging</topic><topic>Interferometry</topic><topic>Kinematics</topic><topic>Near infrared radiation</topic><topic>Parameter sensitivity</topic><topic>Red shift</topic><topic>Rotating disks</topic><topic>Signal to noise ratio</topic><topic>Spectroscopy</topic><topic>Star formation</topic><topic>Stars & galaxies</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Lilian L.</creatorcontrib><creatorcontrib>Förster Schreiber, Natascha M.</creatorcontrib><creatorcontrib>Price, Sedona H.</creatorcontrib><creatorcontrib>Liu, Daizhong</creatorcontrib><creatorcontrib>Genzel, Reinhard</creatorcontrib><creatorcontrib>Davies, Ric</creatorcontrib><creatorcontrib>Tacconi, Linda J.</creatorcontrib><creatorcontrib>Shimizu, Taro T.</creatorcontrib><creatorcontrib>Nestor Shachar, Amit</creatorcontrib><creatorcontrib>Espejo Salcedo, Juan M.</creatorcontrib><creatorcontrib>Pastras, Stavros</creatorcontrib><creatorcontrib>Wuyts, Stijn</creatorcontrib><creatorcontrib>Lutz, Dieter</creatorcontrib><creatorcontrib>Renzini, Alvio</creatorcontrib><creatorcontrib>Übler, Hannah</creatorcontrib><creatorcontrib>Herrera-Camus, Rodrigo</creatorcontrib><creatorcontrib>Sternberg, Amiel</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Lilian L.</au><au>Förster Schreiber, Natascha M.</au><au>Price, Sedona H.</au><au>Liu, Daizhong</au><au>Genzel, Reinhard</au><au>Davies, Ric</au><au>Tacconi, Linda J.</au><au>Shimizu, Taro T.</au><au>Nestor Shachar, Amit</au><au>Espejo Salcedo, Juan M.</au><au>Pastras, Stavros</au><au>Wuyts, Stijn</au><au>Lutz, Dieter</au><au>Renzini, Alvio</au><au>Übler, Hannah</au><au>Herrera-Camus, Rodrigo</au><au>Sternberg, Amiel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disk Kinematics at High Redshift: DysmalPy’s Extension to 3D Modeling and Comparison with Different Approaches</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2025-01-01</date><risdate>2025</risdate><volume>978</volume><issue>1</issue><spage>14</spage><pages>14-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Spatially resolved emission-line kinematics are invaluable for investigating fundamental galaxy properties and have become increasingly accessible for galaxies at z ≳0.5 through sensitive near-infrared imaging spectroscopy and millimeter interferometry. Kinematic modeling is at the core of the analysis and interpretation of such data sets, which at high z present challenges due to the lower signal-to-noise ratio (S/N) and resolution compared to the data of local galaxies. We present and test the 3D fitting functionality of DysmalPy , examining how well it recovers the intrinsic disk rotation velocity and velocity dispersion, using a large suite of axisymmetric models, covering a range of galaxy properties and observational parameters typical of z ∼ 1−3 star-forming galaxies. We also compare DysmalPy ’s recovery performance to that of two other commonly used codes, GalPak 3 D and 3D Barolo , which we use in turn to create additional sets of models to benchmark DysmalPy . Over the ranges of S/N, resolution, mass, and velocity dispersion explored, the rotation velocity is accurately recovered by all tools. The velocity dispersion is recovered well at high S/N, but the impact of methodology differences is more apparent. In particular, template differences for parametric tools and S/N sensitivity for the nonparametric tool can lead to differences of up to a factor of 2. Our tests highlight and the importance of deep, high-resolution data and the need for careful consideration of (i) the choice of priors (parametric approaches); and (ii) the masking (all approaches); and (iii), more generally, the evaluating of the suitability of each approach to the specific data at hand. This paper accompanies the public release of DysmalPy .</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad90b5</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-2125-4670</orcidid><orcidid>https://orcid.org/0000-0002-2767-9653</orcidid><orcidid>https://orcid.org/0000-0002-1485-9401</orcidid><orcidid>https://orcid.org/0000-0001-6703-4676</orcidid><orcidid>https://orcid.org/0000-0002-2775-0595</orcidid><orcidid>https://orcid.org/0000-0002-7093-7355</orcidid><orcidid>https://orcid.org/0000-0003-1785-1357</orcidid><orcidid>https://orcid.org/0000-0003-0291-9582</orcidid><orcidid>https://orcid.org/0000-0003-4891-0794</orcidid><orcidid>https://orcid.org/0000-0003-4264-3381</orcidid><orcidid>https://orcid.org/0000-0001-5065-9530</orcidid><orcidid>https://orcid.org/0000-0003-3735-1931</orcidid><orcidid>https://orcid.org/0000-0001-7457-4371</orcidid><orcidid>https://orcid.org/0000-0001-9773-7479</orcidid><orcidid>https://orcid.org/0000-0002-0108-4176</orcidid><orcidid>https://orcid.org/0000-0003-4949-7217</orcidid><orcidid>https://orcid.org/0009-0009-0472-6080</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2025-01, Vol.978 (1), p.14 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_3147694004 |
source | DOAJ Directory of Open Access Journals; IOP Publishing; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Astronomical models Astronomy data analysis Astronomy data modeling Dispersion Emission analysis Galactic rotation Galaxies Galaxy dynamics Galaxy kinematics High-redshift galaxies Infrared analysis Infrared imaging Interferometry Kinematics Near infrared radiation Parameter sensitivity Red shift Rotating disks Signal to noise ratio Spectroscopy Star formation Stars & galaxies Velocity |
title | Disk Kinematics at High Redshift: DysmalPy’s Extension to 3D Modeling and Comparison with Different Approaches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disk%20Kinematics%20at%20High%20Redshift:%20DysmalPy%E2%80%99s%20Extension%20to%203D%20Modeling%20and%20Comparison%20with%20Different%20Approaches&rft.jtitle=The%20Astrophysical%20journal&rft.au=Lee,%20Lilian%20L.&rft.date=2025-01-01&rft.volume=978&rft.issue=1&rft.spage=14&rft.pages=14-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad90b5&rft_dat=%3Cproquest_cross%3E3147694004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147694004&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_600b88ae076c4b0fa1176047c7e11dac&rfr_iscdi=true |