Disk Kinematics at High Redshift: DysmalPy’s Extension to 3D Modeling and Comparison with Different Approaches

Spatially resolved emission-line kinematics are invaluable for investigating fundamental galaxy properties and have become increasingly accessible for galaxies at z ≳0.5 through sensitive near-infrared imaging spectroscopy and millimeter interferometry. Kinematic modeling is at the core of the analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2025-01, Vol.978 (1), p.14
Hauptverfasser: Lee, Lilian L., Förster Schreiber, Natascha M., Price, Sedona H., Liu, Daizhong, Genzel, Reinhard, Davies, Ric, Tacconi, Linda J., Shimizu, Taro T., Nestor Shachar, Amit, Espejo Salcedo, Juan M., Pastras, Stavros, Wuyts, Stijn, Lutz, Dieter, Renzini, Alvio, Übler, Hannah, Herrera-Camus, Rodrigo, Sternberg, Amiel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 14
container_title The Astrophysical journal
container_volume 978
creator Lee, Lilian L.
Förster Schreiber, Natascha M.
Price, Sedona H.
Liu, Daizhong
Genzel, Reinhard
Davies, Ric
Tacconi, Linda J.
Shimizu, Taro T.
Nestor Shachar, Amit
Espejo Salcedo, Juan M.
Pastras, Stavros
Wuyts, Stijn
Lutz, Dieter
Renzini, Alvio
Übler, Hannah
Herrera-Camus, Rodrigo
Sternberg, Amiel
description Spatially resolved emission-line kinematics are invaluable for investigating fundamental galaxy properties and have become increasingly accessible for galaxies at z ≳0.5 through sensitive near-infrared imaging spectroscopy and millimeter interferometry. Kinematic modeling is at the core of the analysis and interpretation of such data sets, which at high z present challenges due to the lower signal-to-noise ratio (S/N) and resolution compared to the data of local galaxies. We present and test the 3D fitting functionality of DysmalPy , examining how well it recovers the intrinsic disk rotation velocity and velocity dispersion, using a large suite of axisymmetric models, covering a range of galaxy properties and observational parameters typical of z ∼ 1−3 star-forming galaxies. We also compare DysmalPy ’s recovery performance to that of two other commonly used codes, GalPak 3 D and 3D Barolo , which we use in turn to create additional sets of models to benchmark DysmalPy . Over the ranges of S/N, resolution, mass, and velocity dispersion explored, the rotation velocity is accurately recovered by all tools. The velocity dispersion is recovered well at high S/N, but the impact of methodology differences is more apparent. In particular, template differences for parametric tools and S/N sensitivity for the nonparametric tool can lead to differences of up to a factor of 2. Our tests highlight and the importance of deep, high-resolution data and the need for careful consideration of (i) the choice of priors (parametric approaches); and (ii) the masking (all approaches); and (iii), more generally, the evaluating of the suitability of each approach to the specific data at hand. This paper accompanies the public release of DysmalPy .
doi_str_mv 10.3847/1538-4357/ad90b5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3147694004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_600b88ae076c4b0fa1176047c7e11dac</doaj_id><sourcerecordid>3147694004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-c58289d5e758827220d2472773439b3a02607bfb660f6327d42eb20812b12e5d3</originalsourceid><addsrcrecordid>eNp1UU1vEzEQtSqQGlruHC1x7dLxx9re3qqk0IpWIAQSN8u79iYOyXqxXbW58Tf69_pL6rBVOXEazcybN2_mIfSOwAemuDwlNVMVZ7U8NbaBtj5As5fSKzQDAF4JJn8eojcprfcpbZoZGhc-_cKf_eC2JvsuYZPxpV-u8Ddn08r3-QwvdmlrNl93j38eEr64z25IPgw4B8wW-CZYt_HDEpvB4nnYjib6VLp3Pq_wwve9i27I-HwcYzDdyqVj9Lo3m-TePscj9OPjxff5ZXX95dPV_Py66oquXHW1oqqxtZO1UlRSCpZySaVknDUtM0AFyLZvhYBeMCotp66loAhtCXW1ZUfoauK1waz1GP3WxJ0Oxuu_hRCX2sRy8cZpAdAqZRxI0fEWekOIFMBlJx0h1nSF6_3EVY74fetS1utwG4ciXzPCpWh4eWdBwYTqYkgpuv5lKwG990jvDdF7Q_TkURk5mUZ8GP9x_hf-BDAEkZg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147694004</pqid></control><display><type>article</type><title>Disk Kinematics at High Redshift: DysmalPy’s Extension to 3D Modeling and Comparison with Different Approaches</title><source>DOAJ Directory of Open Access Journals</source><source>IOP Publishing</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Lee, Lilian L. ; Förster Schreiber, Natascha M. ; Price, Sedona H. ; Liu, Daizhong ; Genzel, Reinhard ; Davies, Ric ; Tacconi, Linda J. ; Shimizu, Taro T. ; Nestor Shachar, Amit ; Espejo Salcedo, Juan M. ; Pastras, Stavros ; Wuyts, Stijn ; Lutz, Dieter ; Renzini, Alvio ; Übler, Hannah ; Herrera-Camus, Rodrigo ; Sternberg, Amiel</creator><creatorcontrib>Lee, Lilian L. ; Förster Schreiber, Natascha M. ; Price, Sedona H. ; Liu, Daizhong ; Genzel, Reinhard ; Davies, Ric ; Tacconi, Linda J. ; Shimizu, Taro T. ; Nestor Shachar, Amit ; Espejo Salcedo, Juan M. ; Pastras, Stavros ; Wuyts, Stijn ; Lutz, Dieter ; Renzini, Alvio ; Übler, Hannah ; Herrera-Camus, Rodrigo ; Sternberg, Amiel</creatorcontrib><description>Spatially resolved emission-line kinematics are invaluable for investigating fundamental galaxy properties and have become increasingly accessible for galaxies at z ≳0.5 through sensitive near-infrared imaging spectroscopy and millimeter interferometry. Kinematic modeling is at the core of the analysis and interpretation of such data sets, which at high z present challenges due to the lower signal-to-noise ratio (S/N) and resolution compared to the data of local galaxies. We present and test the 3D fitting functionality of DysmalPy , examining how well it recovers the intrinsic disk rotation velocity and velocity dispersion, using a large suite of axisymmetric models, covering a range of galaxy properties and observational parameters typical of z ∼ 1−3 star-forming galaxies. We also compare DysmalPy ’s recovery performance to that of two other commonly used codes, GalPak 3 D and 3D Barolo , which we use in turn to create additional sets of models to benchmark DysmalPy . Over the ranges of S/N, resolution, mass, and velocity dispersion explored, the rotation velocity is accurately recovered by all tools. The velocity dispersion is recovered well at high S/N, but the impact of methodology differences is more apparent. In particular, template differences for parametric tools and S/N sensitivity for the nonparametric tool can lead to differences of up to a factor of 2. Our tests highlight and the importance of deep, high-resolution data and the need for careful consideration of (i) the choice of priors (parametric approaches); and (ii) the masking (all approaches); and (iii), more generally, the evaluating of the suitability of each approach to the specific data at hand. This paper accompanies the public release of DysmalPy .</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad90b5</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astronomical models ; Astronomy data analysis ; Astronomy data modeling ; Dispersion ; Emission analysis ; Galactic rotation ; Galaxies ; Galaxy dynamics ; Galaxy kinematics ; High-redshift galaxies ; Infrared analysis ; Infrared imaging ; Interferometry ; Kinematics ; Near infrared radiation ; Parameter sensitivity ; Red shift ; Rotating disks ; Signal to noise ratio ; Spectroscopy ; Star formation ; Stars &amp; galaxies ; Velocity</subject><ispartof>The Astrophysical journal, 2025-01, Vol.978 (1), p.14</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c299t-c58289d5e758827220d2472773439b3a02607bfb660f6327d42eb20812b12e5d3</cites><orcidid>0000-0002-2125-4670 ; 0000-0002-2767-9653 ; 0000-0002-1485-9401 ; 0000-0001-6703-4676 ; 0000-0002-2775-0595 ; 0000-0002-7093-7355 ; 0000-0003-1785-1357 ; 0000-0003-0291-9582 ; 0000-0003-4891-0794 ; 0000-0003-4264-3381 ; 0000-0001-5065-9530 ; 0000-0003-3735-1931 ; 0000-0001-7457-4371 ; 0000-0001-9773-7479 ; 0000-0002-0108-4176 ; 0000-0003-4949-7217 ; 0009-0009-0472-6080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad90b5/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2100,27922,27923,38888,53865</link.rule.ids></links><search><creatorcontrib>Lee, Lilian L.</creatorcontrib><creatorcontrib>Förster Schreiber, Natascha M.</creatorcontrib><creatorcontrib>Price, Sedona H.</creatorcontrib><creatorcontrib>Liu, Daizhong</creatorcontrib><creatorcontrib>Genzel, Reinhard</creatorcontrib><creatorcontrib>Davies, Ric</creatorcontrib><creatorcontrib>Tacconi, Linda J.</creatorcontrib><creatorcontrib>Shimizu, Taro T.</creatorcontrib><creatorcontrib>Nestor Shachar, Amit</creatorcontrib><creatorcontrib>Espejo Salcedo, Juan M.</creatorcontrib><creatorcontrib>Pastras, Stavros</creatorcontrib><creatorcontrib>Wuyts, Stijn</creatorcontrib><creatorcontrib>Lutz, Dieter</creatorcontrib><creatorcontrib>Renzini, Alvio</creatorcontrib><creatorcontrib>Übler, Hannah</creatorcontrib><creatorcontrib>Herrera-Camus, Rodrigo</creatorcontrib><creatorcontrib>Sternberg, Amiel</creatorcontrib><title>Disk Kinematics at High Redshift: DysmalPy’s Extension to 3D Modeling and Comparison with Different Approaches</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Spatially resolved emission-line kinematics are invaluable for investigating fundamental galaxy properties and have become increasingly accessible for galaxies at z ≳0.5 through sensitive near-infrared imaging spectroscopy and millimeter interferometry. Kinematic modeling is at the core of the analysis and interpretation of such data sets, which at high z present challenges due to the lower signal-to-noise ratio (S/N) and resolution compared to the data of local galaxies. We present and test the 3D fitting functionality of DysmalPy , examining how well it recovers the intrinsic disk rotation velocity and velocity dispersion, using a large suite of axisymmetric models, covering a range of galaxy properties and observational parameters typical of z ∼ 1−3 star-forming galaxies. We also compare DysmalPy ’s recovery performance to that of two other commonly used codes, GalPak 3 D and 3D Barolo , which we use in turn to create additional sets of models to benchmark DysmalPy . Over the ranges of S/N, resolution, mass, and velocity dispersion explored, the rotation velocity is accurately recovered by all tools. The velocity dispersion is recovered well at high S/N, but the impact of methodology differences is more apparent. In particular, template differences for parametric tools and S/N sensitivity for the nonparametric tool can lead to differences of up to a factor of 2. Our tests highlight and the importance of deep, high-resolution data and the need for careful consideration of (i) the choice of priors (parametric approaches); and (ii) the masking (all approaches); and (iii), more generally, the evaluating of the suitability of each approach to the specific data at hand. This paper accompanies the public release of DysmalPy .</description><subject>Astronomical models</subject><subject>Astronomy data analysis</subject><subject>Astronomy data modeling</subject><subject>Dispersion</subject><subject>Emission analysis</subject><subject>Galactic rotation</subject><subject>Galaxies</subject><subject>Galaxy dynamics</subject><subject>Galaxy kinematics</subject><subject>High-redshift galaxies</subject><subject>Infrared analysis</subject><subject>Infrared imaging</subject><subject>Interferometry</subject><subject>Kinematics</subject><subject>Near infrared radiation</subject><subject>Parameter sensitivity</subject><subject>Red shift</subject><subject>Rotating disks</subject><subject>Signal to noise ratio</subject><subject>Spectroscopy</subject><subject>Star formation</subject><subject>Stars &amp; galaxies</subject><subject>Velocity</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1UU1vEzEQtSqQGlruHC1x7dLxx9re3qqk0IpWIAQSN8u79iYOyXqxXbW58Tf69_pL6rBVOXEazcybN2_mIfSOwAemuDwlNVMVZ7U8NbaBtj5As5fSKzQDAF4JJn8eojcprfcpbZoZGhc-_cKf_eC2JvsuYZPxpV-u8Ddn08r3-QwvdmlrNl93j38eEr64z25IPgw4B8wW-CZYt_HDEpvB4nnYjib6VLp3Pq_wwve9i27I-HwcYzDdyqVj9Lo3m-TePscj9OPjxff5ZXX95dPV_Py66oquXHW1oqqxtZO1UlRSCpZySaVknDUtM0AFyLZvhYBeMCotp66loAhtCXW1ZUfoauK1waz1GP3WxJ0Oxuu_hRCX2sRy8cZpAdAqZRxI0fEWekOIFMBlJx0h1nSF6_3EVY74fetS1utwG4ciXzPCpWh4eWdBwYTqYkgpuv5lKwG990jvDdF7Q_TkURk5mUZ8GP9x_hf-BDAEkZg</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Lee, Lilian L.</creator><creator>Förster Schreiber, Natascha M.</creator><creator>Price, Sedona H.</creator><creator>Liu, Daizhong</creator><creator>Genzel, Reinhard</creator><creator>Davies, Ric</creator><creator>Tacconi, Linda J.</creator><creator>Shimizu, Taro T.</creator><creator>Nestor Shachar, Amit</creator><creator>Espejo Salcedo, Juan M.</creator><creator>Pastras, Stavros</creator><creator>Wuyts, Stijn</creator><creator>Lutz, Dieter</creator><creator>Renzini, Alvio</creator><creator>Übler, Hannah</creator><creator>Herrera-Camus, Rodrigo</creator><creator>Sternberg, Amiel</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2125-4670</orcidid><orcidid>https://orcid.org/0000-0002-2767-9653</orcidid><orcidid>https://orcid.org/0000-0002-1485-9401</orcidid><orcidid>https://orcid.org/0000-0001-6703-4676</orcidid><orcidid>https://orcid.org/0000-0002-2775-0595</orcidid><orcidid>https://orcid.org/0000-0002-7093-7355</orcidid><orcidid>https://orcid.org/0000-0003-1785-1357</orcidid><orcidid>https://orcid.org/0000-0003-0291-9582</orcidid><orcidid>https://orcid.org/0000-0003-4891-0794</orcidid><orcidid>https://orcid.org/0000-0003-4264-3381</orcidid><orcidid>https://orcid.org/0000-0001-5065-9530</orcidid><orcidid>https://orcid.org/0000-0003-3735-1931</orcidid><orcidid>https://orcid.org/0000-0001-7457-4371</orcidid><orcidid>https://orcid.org/0000-0001-9773-7479</orcidid><orcidid>https://orcid.org/0000-0002-0108-4176</orcidid><orcidid>https://orcid.org/0000-0003-4949-7217</orcidid><orcidid>https://orcid.org/0009-0009-0472-6080</orcidid></search><sort><creationdate>20250101</creationdate><title>Disk Kinematics at High Redshift: DysmalPy’s Extension to 3D Modeling and Comparison with Different Approaches</title><author>Lee, Lilian L. ; Förster Schreiber, Natascha M. ; Price, Sedona H. ; Liu, Daizhong ; Genzel, Reinhard ; Davies, Ric ; Tacconi, Linda J. ; Shimizu, Taro T. ; Nestor Shachar, Amit ; Espejo Salcedo, Juan M. ; Pastras, Stavros ; Wuyts, Stijn ; Lutz, Dieter ; Renzini, Alvio ; Übler, Hannah ; Herrera-Camus, Rodrigo ; Sternberg, Amiel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-c58289d5e758827220d2472773439b3a02607bfb660f6327d42eb20812b12e5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Astronomical models</topic><topic>Astronomy data analysis</topic><topic>Astronomy data modeling</topic><topic>Dispersion</topic><topic>Emission analysis</topic><topic>Galactic rotation</topic><topic>Galaxies</topic><topic>Galaxy dynamics</topic><topic>Galaxy kinematics</topic><topic>High-redshift galaxies</topic><topic>Infrared analysis</topic><topic>Infrared imaging</topic><topic>Interferometry</topic><topic>Kinematics</topic><topic>Near infrared radiation</topic><topic>Parameter sensitivity</topic><topic>Red shift</topic><topic>Rotating disks</topic><topic>Signal to noise ratio</topic><topic>Spectroscopy</topic><topic>Star formation</topic><topic>Stars &amp; galaxies</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Lilian L.</creatorcontrib><creatorcontrib>Förster Schreiber, Natascha M.</creatorcontrib><creatorcontrib>Price, Sedona H.</creatorcontrib><creatorcontrib>Liu, Daizhong</creatorcontrib><creatorcontrib>Genzel, Reinhard</creatorcontrib><creatorcontrib>Davies, Ric</creatorcontrib><creatorcontrib>Tacconi, Linda J.</creatorcontrib><creatorcontrib>Shimizu, Taro T.</creatorcontrib><creatorcontrib>Nestor Shachar, Amit</creatorcontrib><creatorcontrib>Espejo Salcedo, Juan M.</creatorcontrib><creatorcontrib>Pastras, Stavros</creatorcontrib><creatorcontrib>Wuyts, Stijn</creatorcontrib><creatorcontrib>Lutz, Dieter</creatorcontrib><creatorcontrib>Renzini, Alvio</creatorcontrib><creatorcontrib>Übler, Hannah</creatorcontrib><creatorcontrib>Herrera-Camus, Rodrigo</creatorcontrib><creatorcontrib>Sternberg, Amiel</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Lilian L.</au><au>Förster Schreiber, Natascha M.</au><au>Price, Sedona H.</au><au>Liu, Daizhong</au><au>Genzel, Reinhard</au><au>Davies, Ric</au><au>Tacconi, Linda J.</au><au>Shimizu, Taro T.</au><au>Nestor Shachar, Amit</au><au>Espejo Salcedo, Juan M.</au><au>Pastras, Stavros</au><au>Wuyts, Stijn</au><au>Lutz, Dieter</au><au>Renzini, Alvio</au><au>Übler, Hannah</au><au>Herrera-Camus, Rodrigo</au><au>Sternberg, Amiel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disk Kinematics at High Redshift: DysmalPy’s Extension to 3D Modeling and Comparison with Different Approaches</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2025-01-01</date><risdate>2025</risdate><volume>978</volume><issue>1</issue><spage>14</spage><pages>14-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Spatially resolved emission-line kinematics are invaluable for investigating fundamental galaxy properties and have become increasingly accessible for galaxies at z ≳0.5 through sensitive near-infrared imaging spectroscopy and millimeter interferometry. Kinematic modeling is at the core of the analysis and interpretation of such data sets, which at high z present challenges due to the lower signal-to-noise ratio (S/N) and resolution compared to the data of local galaxies. We present and test the 3D fitting functionality of DysmalPy , examining how well it recovers the intrinsic disk rotation velocity and velocity dispersion, using a large suite of axisymmetric models, covering a range of galaxy properties and observational parameters typical of z ∼ 1−3 star-forming galaxies. We also compare DysmalPy ’s recovery performance to that of two other commonly used codes, GalPak 3 D and 3D Barolo , which we use in turn to create additional sets of models to benchmark DysmalPy . Over the ranges of S/N, resolution, mass, and velocity dispersion explored, the rotation velocity is accurately recovered by all tools. The velocity dispersion is recovered well at high S/N, but the impact of methodology differences is more apparent. In particular, template differences for parametric tools and S/N sensitivity for the nonparametric tool can lead to differences of up to a factor of 2. Our tests highlight and the importance of deep, high-resolution data and the need for careful consideration of (i) the choice of priors (parametric approaches); and (ii) the masking (all approaches); and (iii), more generally, the evaluating of the suitability of each approach to the specific data at hand. This paper accompanies the public release of DysmalPy .</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad90b5</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-2125-4670</orcidid><orcidid>https://orcid.org/0000-0002-2767-9653</orcidid><orcidid>https://orcid.org/0000-0002-1485-9401</orcidid><orcidid>https://orcid.org/0000-0001-6703-4676</orcidid><orcidid>https://orcid.org/0000-0002-2775-0595</orcidid><orcidid>https://orcid.org/0000-0002-7093-7355</orcidid><orcidid>https://orcid.org/0000-0003-1785-1357</orcidid><orcidid>https://orcid.org/0000-0003-0291-9582</orcidid><orcidid>https://orcid.org/0000-0003-4891-0794</orcidid><orcidid>https://orcid.org/0000-0003-4264-3381</orcidid><orcidid>https://orcid.org/0000-0001-5065-9530</orcidid><orcidid>https://orcid.org/0000-0003-3735-1931</orcidid><orcidid>https://orcid.org/0000-0001-7457-4371</orcidid><orcidid>https://orcid.org/0000-0001-9773-7479</orcidid><orcidid>https://orcid.org/0000-0002-0108-4176</orcidid><orcidid>https://orcid.org/0000-0003-4949-7217</orcidid><orcidid>https://orcid.org/0009-0009-0472-6080</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2025-01, Vol.978 (1), p.14
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_3147694004
source DOAJ Directory of Open Access Journals; IOP Publishing; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Astronomical models
Astronomy data analysis
Astronomy data modeling
Dispersion
Emission analysis
Galactic rotation
Galaxies
Galaxy dynamics
Galaxy kinematics
High-redshift galaxies
Infrared analysis
Infrared imaging
Interferometry
Kinematics
Near infrared radiation
Parameter sensitivity
Red shift
Rotating disks
Signal to noise ratio
Spectroscopy
Star formation
Stars & galaxies
Velocity
title Disk Kinematics at High Redshift: DysmalPy’s Extension to 3D Modeling and Comparison with Different Approaches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A49%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disk%20Kinematics%20at%20High%20Redshift:%20DysmalPy%E2%80%99s%20Extension%20to%203D%20Modeling%20and%20Comparison%20with%20Different%20Approaches&rft.jtitle=The%20Astrophysical%20journal&rft.au=Lee,%20Lilian%20L.&rft.date=2025-01-01&rft.volume=978&rft.issue=1&rft.spage=14&rft.pages=14-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad90b5&rft_dat=%3Cproquest_cross%3E3147694004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147694004&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_600b88ae076c4b0fa1176047c7e11dac&rfr_iscdi=true