A capillary problem for spacelike mean curvature flow in a cone of Minkowski space
Consider a convex cone in three-dimensional Minkowski space which either contains the light cone or is contained in it. This work considers mean curvature flow of a proper spacelike strictly mean convex disc in the cone which is graphical with respect to its rays. Its boundary is required to have co...
Gespeichert in:
Veröffentlicht in: | Journal of evolution equations 2025-03, Vol.25 (1), Article 15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of evolution equations |
container_volume | 25 |
creator | Klingenberg, Wilhelm Lambert, Ben Scheuer, Julian |
description | Consider a convex cone in three-dimensional Minkowski space which either contains the light cone or is contained in it. This work considers mean curvature flow of a proper spacelike strictly mean convex disc in the cone which is graphical with respect to its rays. Its boundary is required to have constant intersection angle with the boundary of the cone. We prove that the corresponding parabolic boundary value problem for the graph admits a solution for all time which rescales to a self-similarly expanding solution. |
doi_str_mv | 10.1007/s00028-024-01045-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3147687803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147687803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-46b65b81d4ceaafe1dbff931506fcd0d82192e3b075101815c9462235f9cbdd13</originalsourceid><addsrcrecordid>eNo1kFtLxDAQhYMouK7-AZ8CPldncmnSx2XxBoog-hzSNIHudpuabF3891arT3MGzsyc-Qi5RLhGAHWTAYDpApgoAEHIQh2RBYqp5QzY8b_GqjolZzlvAFBJLRfkdUWdHdqus-mLDinWnd_REBPNg3W-a7ee7rztqRvTp92PydPQxQNte2qpi72nMdDntt_GQ96289A5OQm2y_7iry7J-93t2_qheHq5f1yvngrHAPaFKOtS1hob4by1wWNTh1BxlFAG10CjGVbM8xqURECN0lWiZIzLULm6aZAvydW8d4r9Mfq8N5s4pn46aTgKVWqlgU8uNrtcijknH8yQ2t30rUEwP-zMzM5M7MwvO6P4N0djYUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147687803</pqid></control><display><type>article</type><title>A capillary problem for spacelike mean curvature flow in a cone of Minkowski space</title><source>Springer Nature - Complete Springer Journals</source><creator>Klingenberg, Wilhelm ; Lambert, Ben ; Scheuer, Julian</creator><creatorcontrib>Klingenberg, Wilhelm ; Lambert, Ben ; Scheuer, Julian</creatorcontrib><description>Consider a convex cone in three-dimensional Minkowski space which either contains the light cone or is contained in it. This work considers mean curvature flow of a proper spacelike strictly mean convex disc in the cone which is graphical with respect to its rays. Its boundary is required to have constant intersection angle with the boundary of the cone. We prove that the corresponding parabolic boundary value problem for the graph admits a solution for all time which rescales to a self-similarly expanding solution.</description><identifier>ISSN: 1424-3199</identifier><identifier>EISSN: 1424-3202</identifier><identifier>DOI: 10.1007/s00028-024-01045-7</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Boundary value problems ; Capillary flow ; Curvature ; Minkowski space ; Three dimensional flow</subject><ispartof>Journal of evolution equations, 2025-03, Vol.25 (1), Article 15</ispartof><rights>Copyright Springer Nature B.V. 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-46b65b81d4ceaafe1dbff931506fcd0d82192e3b075101815c9462235f9cbdd13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Klingenberg, Wilhelm</creatorcontrib><creatorcontrib>Lambert, Ben</creatorcontrib><creatorcontrib>Scheuer, Julian</creatorcontrib><title>A capillary problem for spacelike mean curvature flow in a cone of Minkowski space</title><title>Journal of evolution equations</title><description>Consider a convex cone in three-dimensional Minkowski space which either contains the light cone or is contained in it. This work considers mean curvature flow of a proper spacelike strictly mean convex disc in the cone which is graphical with respect to its rays. Its boundary is required to have constant intersection angle with the boundary of the cone. We prove that the corresponding parabolic boundary value problem for the graph admits a solution for all time which rescales to a self-similarly expanding solution.</description><subject>Boundary value problems</subject><subject>Capillary flow</subject><subject>Curvature</subject><subject>Minkowski space</subject><subject>Three dimensional flow</subject><issn>1424-3199</issn><issn>1424-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo1kFtLxDAQhYMouK7-AZ8CPldncmnSx2XxBoog-hzSNIHudpuabF3891arT3MGzsyc-Qi5RLhGAHWTAYDpApgoAEHIQh2RBYqp5QzY8b_GqjolZzlvAFBJLRfkdUWdHdqus-mLDinWnd_REBPNg3W-a7ee7rztqRvTp92PydPQxQNte2qpi72nMdDntt_GQ96289A5OQm2y_7iry7J-93t2_qheHq5f1yvngrHAPaFKOtS1hob4by1wWNTh1BxlFAG10CjGVbM8xqURECN0lWiZIzLULm6aZAvydW8d4r9Mfq8N5s4pn46aTgKVWqlgU8uNrtcijknH8yQ2t30rUEwP-zMzM5M7MwvO6P4N0djYUw</recordid><startdate>20250301</startdate><enddate>20250301</enddate><creator>Klingenberg, Wilhelm</creator><creator>Lambert, Ben</creator><creator>Scheuer, Julian</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20250301</creationdate><title>A capillary problem for spacelike mean curvature flow in a cone of Minkowski space</title><author>Klingenberg, Wilhelm ; Lambert, Ben ; Scheuer, Julian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-46b65b81d4ceaafe1dbff931506fcd0d82192e3b075101815c9462235f9cbdd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Boundary value problems</topic><topic>Capillary flow</topic><topic>Curvature</topic><topic>Minkowski space</topic><topic>Three dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klingenberg, Wilhelm</creatorcontrib><creatorcontrib>Lambert, Ben</creatorcontrib><creatorcontrib>Scheuer, Julian</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of evolution equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klingenberg, Wilhelm</au><au>Lambert, Ben</au><au>Scheuer, Julian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A capillary problem for spacelike mean curvature flow in a cone of Minkowski space</atitle><jtitle>Journal of evolution equations</jtitle><date>2025-03-01</date><risdate>2025</risdate><volume>25</volume><issue>1</issue><artnum>15</artnum><issn>1424-3199</issn><eissn>1424-3202</eissn><abstract>Consider a convex cone in three-dimensional Minkowski space which either contains the light cone or is contained in it. This work considers mean curvature flow of a proper spacelike strictly mean convex disc in the cone which is graphical with respect to its rays. Its boundary is required to have constant intersection angle with the boundary of the cone. We prove that the corresponding parabolic boundary value problem for the graph admits a solution for all time which rescales to a self-similarly expanding solution.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00028-024-01045-7</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-3199 |
ispartof | Journal of evolution equations, 2025-03, Vol.25 (1), Article 15 |
issn | 1424-3199 1424-3202 |
language | eng |
recordid | cdi_proquest_journals_3147687803 |
source | Springer Nature - Complete Springer Journals |
subjects | Boundary value problems Capillary flow Curvature Minkowski space Three dimensional flow |
title | A capillary problem for spacelike mean curvature flow in a cone of Minkowski space |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A07%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20capillary%20problem%20for%20spacelike%20mean%20curvature%20flow%20in%20a%20cone%20of%20Minkowski%20space&rft.jtitle=Journal%20of%20evolution%20equations&rft.au=Klingenberg,%20Wilhelm&rft.date=2025-03-01&rft.volume=25&rft.issue=1&rft.artnum=15&rft.issn=1424-3199&rft.eissn=1424-3202&rft_id=info:doi/10.1007/s00028-024-01045-7&rft_dat=%3Cproquest_cross%3E3147687803%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147687803&rft_id=info:pmid/&rfr_iscdi=true |