Functionally graded materials of SS316L and IN625 manufactured by direct metal deposition

Direct metal deposition (DMD) is a layer-by-layer material addition process. Partial functionally graded material (FGM) blocks of size 26 mm wide × 34 mm thick × 32 mm height were 3D printed based on Taguchi’s L9 approach using a commercial DMD machine equipped with a diode laser. The parameters sel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical behaviour of materials 2024-12, Vol.33 (1)
Hauptverfasser: Dev Singh, D., Arjula, Suresh, Raji Reddy, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of mechanical behaviour of materials
container_volume 33
creator Dev Singh, D.
Arjula, Suresh
Raji Reddy, A.
description Direct metal deposition (DMD) is a layer-by-layer material addition process. Partial functionally graded material (FGM) blocks of size 26 mm wide × 34 mm thick × 32 mm height were 3D printed based on Taguchi’s L9 approach using a commercial DMD machine equipped with a diode laser. The parameters selected for FGM deposition were laser power, scan velocity, and powder feed rate. The metal powders used for deposition were Stainless Steel 316L (SS316L) and Inconel 625 (IN625). The novelty is the introduction of three gradient layers for joining dissimilar materials of SS316L and IN625. ASTM E8 tensile specimens were cut from each FGM block for testing and characterization. Tensile test results revealed that the thick-layered partial FGM specimen-6 had a high ultimate tensile strength (UTS) of 532.6 MPa at the sixth set of optimum parameters. This is due to the mixed presence of coarser and fine columnar grains and equiaxed grain microstructures. Based on the analysis of variance, scan velocity had a more significant effect on UTS and powder feed rate on micro-hardness. However, a maximum micro-hardness of 202.5 HV was observed in the gradient layers of the ninth sample at the ninth set of parameters. The fractography analysis revealed the ductile failure of specimens.
doi_str_mv 10.1515/jmbm-2024-0026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3147598790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147598790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1171-775e935ac864203ec49cd7e5fc5d7a0399522e08646c47ef61df32b02620b1d3</originalsourceid><addsrcrecordid>eNp1kL1rwzAQxUVpoSHN2lnQ2alOsixrLKFpA6EdkqWTkCU52PgjlWyK__vKpNAuveXuuPce3A-heyBr4MAf67ZoE0pomhBCsyu0oCAhiTu7_jPfolUINYmVSuB5vkAf27EzQ9V3umkmfPLaOotbPThf6SbgvsSHA4Nsj3Vn8e4tozxeu7HUZhh9lBYTtpV3ZsCtG3SDrTv3oZoD79BNGSPc6qcv0XH7fNy8Jvv3l93maZ8YAAGJENxJxrXJs5QS5kwqjRWOl4ZboQmTklPqSLxmJhWuzMCWjBbxSUoKsGyJHi6xZ99_ji4Mqu5HH98JikEquMyFJFG1vqiM70PwrlRnX7XaTwqImgGqGaCaAaoZYDTIi-FLNxGGdSc_TnH4Tf_HyIB9AxzxdRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147598790</pqid></control><display><type>article</type><title>Functionally graded materials of SS316L and IN625 manufactured by direct metal deposition</title><source>De Gruyter Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dev Singh, D. ; Arjula, Suresh ; Raji Reddy, A.</creator><creatorcontrib>Dev Singh, D. ; Arjula, Suresh ; Raji Reddy, A.</creatorcontrib><description>Direct metal deposition (DMD) is a layer-by-layer material addition process. Partial functionally graded material (FGM) blocks of size 26 mm wide × 34 mm thick × 32 mm height were 3D printed based on Taguchi’s L9 approach using a commercial DMD machine equipped with a diode laser. The parameters selected for FGM deposition were laser power, scan velocity, and powder feed rate. The metal powders used for deposition were Stainless Steel 316L (SS316L) and Inconel 625 (IN625). The novelty is the introduction of three gradient layers for joining dissimilar materials of SS316L and IN625. ASTM E8 tensile specimens were cut from each FGM block for testing and characterization. Tensile test results revealed that the thick-layered partial FGM specimen-6 had a high ultimate tensile strength (UTS) of 532.6 MPa at the sixth set of optimum parameters. This is due to the mixed presence of coarser and fine columnar grains and equiaxed grain microstructures. Based on the analysis of variance, scan velocity had a more significant effect on UTS and powder feed rate on micro-hardness. However, a maximum micro-hardness of 202.5 HV was observed in the gradient layers of the ninth sample at the ninth set of parameters. The fractography analysis revealed the ductile failure of specimens.</description><identifier>ISSN: 2191-0243</identifier><identifier>ISSN: 0334-8938</identifier><identifier>EISSN: 2191-0243</identifier><identifier>DOI: 10.1515/jmbm-2024-0026</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>Deposition ; direct metal deposition ; Dissimilar material joining ; Feed rate ; functionally graded materials ; Functionally gradient materials ; IN625 ; Metal powders ; Microhardness ; Nickel base alloys ; Parameters ; Semiconductor lasers ; SS316L ; Superalloys ; Taguchi method ; Tensile tests ; Ultimate tensile strength</subject><ispartof>Journal of mechanical behaviour of materials, 2024-12, Vol.33 (1)</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1171-775e935ac864203ec49cd7e5fc5d7a0399522e08646c47ef61df32b02620b1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/jmbm-2024-0026/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/jmbm-2024-0026/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27923,27924,67029,68813</link.rule.ids></links><search><creatorcontrib>Dev Singh, D.</creatorcontrib><creatorcontrib>Arjula, Suresh</creatorcontrib><creatorcontrib>Raji Reddy, A.</creatorcontrib><title>Functionally graded materials of SS316L and IN625 manufactured by direct metal deposition</title><title>Journal of mechanical behaviour of materials</title><description>Direct metal deposition (DMD) is a layer-by-layer material addition process. Partial functionally graded material (FGM) blocks of size 26 mm wide × 34 mm thick × 32 mm height were 3D printed based on Taguchi’s L9 approach using a commercial DMD machine equipped with a diode laser. The parameters selected for FGM deposition were laser power, scan velocity, and powder feed rate. The metal powders used for deposition were Stainless Steel 316L (SS316L) and Inconel 625 (IN625). The novelty is the introduction of three gradient layers for joining dissimilar materials of SS316L and IN625. ASTM E8 tensile specimens were cut from each FGM block for testing and characterization. Tensile test results revealed that the thick-layered partial FGM specimen-6 had a high ultimate tensile strength (UTS) of 532.6 MPa at the sixth set of optimum parameters. This is due to the mixed presence of coarser and fine columnar grains and equiaxed grain microstructures. Based on the analysis of variance, scan velocity had a more significant effect on UTS and powder feed rate on micro-hardness. However, a maximum micro-hardness of 202.5 HV was observed in the gradient layers of the ninth sample at the ninth set of parameters. The fractography analysis revealed the ductile failure of specimens.</description><subject>Deposition</subject><subject>direct metal deposition</subject><subject>Dissimilar material joining</subject><subject>Feed rate</subject><subject>functionally graded materials</subject><subject>Functionally gradient materials</subject><subject>IN625</subject><subject>Metal powders</subject><subject>Microhardness</subject><subject>Nickel base alloys</subject><subject>Parameters</subject><subject>Semiconductor lasers</subject><subject>SS316L</subject><subject>Superalloys</subject><subject>Taguchi method</subject><subject>Tensile tests</subject><subject>Ultimate tensile strength</subject><issn>2191-0243</issn><issn>0334-8938</issn><issn>2191-0243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kL1rwzAQxUVpoSHN2lnQ2alOsixrLKFpA6EdkqWTkCU52PgjlWyK__vKpNAuveXuuPce3A-heyBr4MAf67ZoE0pomhBCsyu0oCAhiTu7_jPfolUINYmVSuB5vkAf27EzQ9V3umkmfPLaOotbPThf6SbgvsSHA4Nsj3Vn8e4tozxeu7HUZhh9lBYTtpV3ZsCtG3SDrTv3oZoD79BNGSPc6qcv0XH7fNy8Jvv3l93maZ8YAAGJENxJxrXJs5QS5kwqjRWOl4ZboQmTklPqSLxmJhWuzMCWjBbxSUoKsGyJHi6xZ99_ji4Mqu5HH98JikEquMyFJFG1vqiM70PwrlRnX7XaTwqImgGqGaCaAaoZYDTIi-FLNxGGdSc_TnH4Tf_HyIB9AxzxdRU</recordid><startdate>20241221</startdate><enddate>20241221</enddate><creator>Dev Singh, D.</creator><creator>Arjula, Suresh</creator><creator>Raji Reddy, A.</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20241221</creationdate><title>Functionally graded materials of SS316L and IN625 manufactured by direct metal deposition</title><author>Dev Singh, D. ; Arjula, Suresh ; Raji Reddy, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1171-775e935ac864203ec49cd7e5fc5d7a0399522e08646c47ef61df32b02620b1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deposition</topic><topic>direct metal deposition</topic><topic>Dissimilar material joining</topic><topic>Feed rate</topic><topic>functionally graded materials</topic><topic>Functionally gradient materials</topic><topic>IN625</topic><topic>Metal powders</topic><topic>Microhardness</topic><topic>Nickel base alloys</topic><topic>Parameters</topic><topic>Semiconductor lasers</topic><topic>SS316L</topic><topic>Superalloys</topic><topic>Taguchi method</topic><topic>Tensile tests</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dev Singh, D.</creatorcontrib><creatorcontrib>Arjula, Suresh</creatorcontrib><creatorcontrib>Raji Reddy, A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of mechanical behaviour of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dev Singh, D.</au><au>Arjula, Suresh</au><au>Raji Reddy, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functionally graded materials of SS316L and IN625 manufactured by direct metal deposition</atitle><jtitle>Journal of mechanical behaviour of materials</jtitle><date>2024-12-21</date><risdate>2024</risdate><volume>33</volume><issue>1</issue><issn>2191-0243</issn><issn>0334-8938</issn><eissn>2191-0243</eissn><abstract>Direct metal deposition (DMD) is a layer-by-layer material addition process. Partial functionally graded material (FGM) blocks of size 26 mm wide × 34 mm thick × 32 mm height were 3D printed based on Taguchi’s L9 approach using a commercial DMD machine equipped with a diode laser. The parameters selected for FGM deposition were laser power, scan velocity, and powder feed rate. The metal powders used for deposition were Stainless Steel 316L (SS316L) and Inconel 625 (IN625). The novelty is the introduction of three gradient layers for joining dissimilar materials of SS316L and IN625. ASTM E8 tensile specimens were cut from each FGM block for testing and characterization. Tensile test results revealed that the thick-layered partial FGM specimen-6 had a high ultimate tensile strength (UTS) of 532.6 MPa at the sixth set of optimum parameters. This is due to the mixed presence of coarser and fine columnar grains and equiaxed grain microstructures. Based on the analysis of variance, scan velocity had a more significant effect on UTS and powder feed rate on micro-hardness. However, a maximum micro-hardness of 202.5 HV was observed in the gradient layers of the ninth sample at the ninth set of parameters. The fractography analysis revealed the ductile failure of specimens.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/jmbm-2024-0026</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2191-0243
ispartof Journal of mechanical behaviour of materials, 2024-12, Vol.33 (1)
issn 2191-0243
0334-8938
2191-0243
language eng
recordid cdi_proquest_journals_3147598790
source De Gruyter Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Deposition
direct metal deposition
Dissimilar material joining
Feed rate
functionally graded materials
Functionally gradient materials
IN625
Metal powders
Microhardness
Nickel base alloys
Parameters
Semiconductor lasers
SS316L
Superalloys
Taguchi method
Tensile tests
Ultimate tensile strength
title Functionally graded materials of SS316L and IN625 manufactured by direct metal deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A11%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functionally%20graded%20materials%20of%20SS316L%20and%20IN625%20manufactured%20by%20direct%20metal%20deposition&rft.jtitle=Journal%20of%20mechanical%20behaviour%20of%20materials&rft.au=Dev%20Singh,%20D.&rft.date=2024-12-21&rft.volume=33&rft.issue=1&rft.issn=2191-0243&rft.eissn=2191-0243&rft_id=info:doi/10.1515/jmbm-2024-0026&rft_dat=%3Cproquest_cross%3E3147598790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147598790&rft_id=info:pmid/&rfr_iscdi=true