Catalytic decarboxylation of crude oil in a fixed-bed pyrolysis reactor
This study focused on using titanium dioxide (TiO 2 ) as a catalyst to decarboxylate crude oil from the Imo oil field in Nigeria. The TiO 2 catalyst was characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermogravime...
Gespeichert in:
Veröffentlicht in: | DISCOVER ENERGY 2024-12, Vol.4 (1), p.33-12, Article 33 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 1 |
container_start_page | 33 |
container_title | DISCOVER ENERGY |
container_volume | 4 |
creator | Adebiyi, Festus M. Ore, Odunayo T. Oyegoke, Praise B. |
description | This study focused on using titanium dioxide (TiO
2
) as a catalyst to decarboxylate crude oil from the Imo oil field in Nigeria. The TiO
2
catalyst was characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). XRD investigation identified rutile-TiO
2
as the primary crystalline phase, with important diffraction peaks matching the ASTM standard for rutile. SEM showed extensive agglomerations of TiO
2
particles, whereas FT-IR detected surface functional groups such as hydroxyl, carbonyl, and aromatic. TGA identified three separate weight-loss stages, the biggest of which occurred in the devolatilization region, accounting for around 84%. The catalytic decarboxylation process revealed a considerable decrease in the total acid number (TAN) of the crude oil as the temperature increased, reaching a TAN of 0.28 mg KOH g⁻
1
at 300 °C, with 96.35% decarboxylation. The TiO
2
-catalyzed process outperformed thermal cracking alone, resulting in less oxygenated functional groups and increased oil quality. These findings show that rutile-TiO
2
can be an excellent catalyst for decarboxylation in crude oil refining. |
doi_str_mv | 10.1007/s43937-024-00062-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3147577134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A820761295</galeid><doaj_id>oai_doaj_org_article_43d4e33a89bb4237a4b6b7e6707c4dc1</doaj_id><sourcerecordid>A820761295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2924-367f88deaee7ba956b30374b94599052820baef7bf2f6a284d3ef83f1906f1053</originalsourceid><addsrcrecordid>eNp9UU1LJDEQbRaFFfUPeArsuTVf3ekcZXBVEPaynkMlqQwZ2s6Y9ID97zdjL-pJcqhQvPfqVb2muWL0mlGqbooUWqiWctlSSnveyh_NGVeCtkoxffLl_7O5LGVXQVzzTunhrLnfwAzjMkdHPDrINr0tI8wxTSQF4vLBI0lxJHEiQEJ8Q99a9GS_5DQuJRaSEdyc8kVzGmAsePm_njfPv-_-bh7apz_3j5vbp9bVkbIVvQrD4BEQlQXd9VZQoaTVstOadnzg1AIGZQMPPfBBeoFhEIFp2gdGO3HePK66PsHO7HN8gbyYBNG8N1LeGsh1mxGNFF6iEDBoayUXCqTtrcJeUeWkd6xq_Vq19jm9HrDMZpcOear2jWBSdfViQlbU9YraQhWNU0hzBlefx5fo0oQh1v5tda56xvXRIl8JLqdSMoYPm4yaY2BmDczUwMx7YOY4RaykUsHTFvOnl29Y_wD37JaJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147577134</pqid></control><display><type>article</type><title>Catalytic decarboxylation of crude oil in a fixed-bed pyrolysis reactor</title><source>SpringerLink Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Springer Nature OA Free Journals</source><creator>Adebiyi, Festus M. ; Ore, Odunayo T. ; Oyegoke, Praise B.</creator><creatorcontrib>Adebiyi, Festus M. ; Ore, Odunayo T. ; Oyegoke, Praise B.</creatorcontrib><description>This study focused on using titanium dioxide (TiO
2
) as a catalyst to decarboxylate crude oil from the Imo oil field in Nigeria. The TiO
2
catalyst was characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). XRD investigation identified rutile-TiO
2
as the primary crystalline phase, with important diffraction peaks matching the ASTM standard for rutile. SEM showed extensive agglomerations of TiO
2
particles, whereas FT-IR detected surface functional groups such as hydroxyl, carbonyl, and aromatic. TGA identified three separate weight-loss stages, the biggest of which occurred in the devolatilization region, accounting for around 84%. The catalytic decarboxylation process revealed a considerable decrease in the total acid number (TAN) of the crude oil as the temperature increased, reaching a TAN of 0.28 mg KOH g⁻
1
at 300 °C, with 96.35% decarboxylation. The TiO
2
-catalyzed process outperformed thermal cracking alone, resulting in less oxygenated functional groups and increased oil quality. These findings show that rutile-TiO
2
can be an excellent catalyst for decarboxylation in crude oil refining.</description><identifier>ISSN: 2730-7719</identifier><identifier>EISSN: 2730-7719</identifier><identifier>DOI: 10.1007/s43937-024-00062-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Acids ; Alternative energy ; Analysis ; Carbon ; Catalyst ; Crude oil ; Diffraction ; Energy ; Energy Efficiency ; Energy Harvesting ; Energy Storage ; Energy Systems ; Fourier transforms ; Hydrocarbons ; Infrared spectroscopy ; Laboratories ; Metal oxides ; Morphology ; Naphthenic acids ; Oil fields ; Petroleum ; Phase transitions ; Phenolphthalein ; Pyrolysis ; Refining ; Renewable and Green Energy ; Skin care products ; Spectrum analysis ; Temperature ; Titanium ; Titanium dioxide ; Total acid number ; X-rays ; Zeolites</subject><ispartof>DISCOVER ENERGY, 2024-12, Vol.4 (1), p.33-12, Article 33</ispartof><rights>The Author(s) 2024</rights><rights>COPYRIGHT 2024 Springer</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2924-367f88deaee7ba956b30374b94599052820baef7bf2f6a284d3ef83f1906f1053</cites><orcidid>0000-0003-3458-6911 ; 0000-0002-5529-1509 ; 0009-0001-8750-584X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s43937-024-00062-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s43937-024-00062-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27901,27902,41096,41464,42165,42533,51294,51551</link.rule.ids></links><search><creatorcontrib>Adebiyi, Festus M.</creatorcontrib><creatorcontrib>Ore, Odunayo T.</creatorcontrib><creatorcontrib>Oyegoke, Praise B.</creatorcontrib><title>Catalytic decarboxylation of crude oil in a fixed-bed pyrolysis reactor</title><title>DISCOVER ENERGY</title><addtitle>Discov Energy</addtitle><description>This study focused on using titanium dioxide (TiO
2
) as a catalyst to decarboxylate crude oil from the Imo oil field in Nigeria. The TiO
2
catalyst was characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). XRD investigation identified rutile-TiO
2
as the primary crystalline phase, with important diffraction peaks matching the ASTM standard for rutile. SEM showed extensive agglomerations of TiO
2
particles, whereas FT-IR detected surface functional groups such as hydroxyl, carbonyl, and aromatic. TGA identified three separate weight-loss stages, the biggest of which occurred in the devolatilization region, accounting for around 84%. The catalytic decarboxylation process revealed a considerable decrease in the total acid number (TAN) of the crude oil as the temperature increased, reaching a TAN of 0.28 mg KOH g⁻
1
at 300 °C, with 96.35% decarboxylation. The TiO
2
-catalyzed process outperformed thermal cracking alone, resulting in less oxygenated functional groups and increased oil quality. These findings show that rutile-TiO
2
can be an excellent catalyst for decarboxylation in crude oil refining.</description><subject>Acids</subject><subject>Alternative energy</subject><subject>Analysis</subject><subject>Carbon</subject><subject>Catalyst</subject><subject>Crude oil</subject><subject>Diffraction</subject><subject>Energy</subject><subject>Energy Efficiency</subject><subject>Energy Harvesting</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Fourier transforms</subject><subject>Hydrocarbons</subject><subject>Infrared spectroscopy</subject><subject>Laboratories</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Naphthenic acids</subject><subject>Oil fields</subject><subject>Petroleum</subject><subject>Phase transitions</subject><subject>Phenolphthalein</subject><subject>Pyrolysis</subject><subject>Refining</subject><subject>Renewable and Green Energy</subject><subject>Skin care products</subject><subject>Spectrum analysis</subject><subject>Temperature</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Total acid number</subject><subject>X-rays</subject><subject>Zeolites</subject><issn>2730-7719</issn><issn>2730-7719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1LJDEQbRaFFfUPeArsuTVf3ekcZXBVEPaynkMlqQwZ2s6Y9ID97zdjL-pJcqhQvPfqVb2muWL0mlGqbooUWqiWctlSSnveyh_NGVeCtkoxffLl_7O5LGVXQVzzTunhrLnfwAzjMkdHPDrINr0tI8wxTSQF4vLBI0lxJHEiQEJ8Q99a9GS_5DQuJRaSEdyc8kVzGmAsePm_njfPv-_-bh7apz_3j5vbp9bVkbIVvQrD4BEQlQXd9VZQoaTVstOadnzg1AIGZQMPPfBBeoFhEIFp2gdGO3HePK66PsHO7HN8gbyYBNG8N1LeGsh1mxGNFF6iEDBoayUXCqTtrcJeUeWkd6xq_Vq19jm9HrDMZpcOear2jWBSdfViQlbU9YraQhWNU0hzBlefx5fo0oQh1v5tda56xvXRIl8JLqdSMoYPm4yaY2BmDczUwMx7YOY4RaykUsHTFvOnl29Y_wD37JaJ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Adebiyi, Festus M.</creator><creator>Ore, Odunayo T.</creator><creator>Oyegoke, Praise B.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3458-6911</orcidid><orcidid>https://orcid.org/0000-0002-5529-1509</orcidid><orcidid>https://orcid.org/0009-0001-8750-584X</orcidid></search><sort><creationdate>20241201</creationdate><title>Catalytic decarboxylation of crude oil in a fixed-bed pyrolysis reactor</title><author>Adebiyi, Festus M. ; Ore, Odunayo T. ; Oyegoke, Praise B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2924-367f88deaee7ba956b30374b94599052820baef7bf2f6a284d3ef83f1906f1053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acids</topic><topic>Alternative energy</topic><topic>Analysis</topic><topic>Carbon</topic><topic>Catalyst</topic><topic>Crude oil</topic><topic>Diffraction</topic><topic>Energy</topic><topic>Energy Efficiency</topic><topic>Energy Harvesting</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Fourier transforms</topic><topic>Hydrocarbons</topic><topic>Infrared spectroscopy</topic><topic>Laboratories</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Naphthenic acids</topic><topic>Oil fields</topic><topic>Petroleum</topic><topic>Phase transitions</topic><topic>Phenolphthalein</topic><topic>Pyrolysis</topic><topic>Refining</topic><topic>Renewable and Green Energy</topic><topic>Skin care products</topic><topic>Spectrum analysis</topic><topic>Temperature</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Total acid number</topic><topic>X-rays</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adebiyi, Festus M.</creatorcontrib><creatorcontrib>Ore, Odunayo T.</creatorcontrib><creatorcontrib>Oyegoke, Praise B.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>DISCOVER ENERGY</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adebiyi, Festus M.</au><au>Ore, Odunayo T.</au><au>Oyegoke, Praise B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic decarboxylation of crude oil in a fixed-bed pyrolysis reactor</atitle><jtitle>DISCOVER ENERGY</jtitle><stitle>Discov Energy</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>4</volume><issue>1</issue><spage>33</spage><epage>12</epage><pages>33-12</pages><artnum>33</artnum><issn>2730-7719</issn><eissn>2730-7719</eissn><abstract>This study focused on using titanium dioxide (TiO
2
) as a catalyst to decarboxylate crude oil from the Imo oil field in Nigeria. The TiO
2
catalyst was characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). XRD investigation identified rutile-TiO
2
as the primary crystalline phase, with important diffraction peaks matching the ASTM standard for rutile. SEM showed extensive agglomerations of TiO
2
particles, whereas FT-IR detected surface functional groups such as hydroxyl, carbonyl, and aromatic. TGA identified three separate weight-loss stages, the biggest of which occurred in the devolatilization region, accounting for around 84%. The catalytic decarboxylation process revealed a considerable decrease in the total acid number (TAN) of the crude oil as the temperature increased, reaching a TAN of 0.28 mg KOH g⁻
1
at 300 °C, with 96.35% decarboxylation. The TiO
2
-catalyzed process outperformed thermal cracking alone, resulting in less oxygenated functional groups and increased oil quality. These findings show that rutile-TiO
2
can be an excellent catalyst for decarboxylation in crude oil refining.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s43937-024-00062-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3458-6911</orcidid><orcidid>https://orcid.org/0000-0002-5529-1509</orcidid><orcidid>https://orcid.org/0009-0001-8750-584X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2730-7719 |
ispartof | DISCOVER ENERGY, 2024-12, Vol.4 (1), p.33-12, Article 33 |
issn | 2730-7719 2730-7719 |
language | eng |
recordid | cdi_proquest_journals_3147577134 |
source | SpringerLink Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Springer Nature OA Free Journals |
subjects | Acids Alternative energy Analysis Carbon Catalyst Crude oil Diffraction Energy Energy Efficiency Energy Harvesting Energy Storage Energy Systems Fourier transforms Hydrocarbons Infrared spectroscopy Laboratories Metal oxides Morphology Naphthenic acids Oil fields Petroleum Phase transitions Phenolphthalein Pyrolysis Refining Renewable and Green Energy Skin care products Spectrum analysis Temperature Titanium Titanium dioxide Total acid number X-rays Zeolites |
title | Catalytic decarboxylation of crude oil in a fixed-bed pyrolysis reactor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20decarboxylation%20of%20crude%20oil%20in%20a%20fixed-bed%20pyrolysis%20reactor&rft.jtitle=DISCOVER%20ENERGY&rft.au=Adebiyi,%20Festus%20M.&rft.date=2024-12-01&rft.volume=4&rft.issue=1&rft.spage=33&rft.epage=12&rft.pages=33-12&rft.artnum=33&rft.issn=2730-7719&rft.eissn=2730-7719&rft_id=info:doi/10.1007/s43937-024-00062-4&rft_dat=%3Cgale_doaj_%3EA820761295%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147577134&rft_id=info:pmid/&rft_galeid=A820761295&rft_doaj_id=oai_doaj_org_article_43d4e33a89bb4237a4b6b7e6707c4dc1&rfr_iscdi=true |