Catalytic decarboxylation of crude oil in a fixed-bed pyrolysis reactor

This study focused on using titanium dioxide (TiO 2 ) as a catalyst to decarboxylate crude oil from the Imo oil field in Nigeria. The TiO 2 catalyst was characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermogravime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:DISCOVER ENERGY 2024-12, Vol.4 (1), p.33-12, Article 33
Hauptverfasser: Adebiyi, Festus M., Ore, Odunayo T., Oyegoke, Praise B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 33
container_title DISCOVER ENERGY
container_volume 4
creator Adebiyi, Festus M.
Ore, Odunayo T.
Oyegoke, Praise B.
description This study focused on using titanium dioxide (TiO 2 ) as a catalyst to decarboxylate crude oil from the Imo oil field in Nigeria. The TiO 2 catalyst was characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). XRD investigation identified rutile-TiO 2 as the primary crystalline phase, with important diffraction peaks matching the ASTM standard for rutile. SEM showed extensive agglomerations of TiO 2 particles, whereas FT-IR detected surface functional groups such as hydroxyl, carbonyl, and aromatic. TGA identified three separate weight-loss stages, the biggest of which occurred in the devolatilization region, accounting for around 84%. The catalytic decarboxylation process revealed a considerable decrease in the total acid number (TAN) of the crude oil as the temperature increased, reaching a TAN of 0.28 mg KOH g⁻ 1 at 300 °C, with 96.35% decarboxylation. The TiO 2 -catalyzed process outperformed thermal cracking alone, resulting in less oxygenated functional groups and increased oil quality. These findings show that rutile-TiO 2 can be an excellent catalyst for decarboxylation in crude oil refining.
doi_str_mv 10.1007/s43937-024-00062-4
format Article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3147577134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A820761295</galeid><doaj_id>oai_doaj_org_article_43d4e33a89bb4237a4b6b7e6707c4dc1</doaj_id><sourcerecordid>A820761295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2924-367f88deaee7ba956b30374b94599052820baef7bf2f6a284d3ef83f1906f1053</originalsourceid><addsrcrecordid>eNp9UU1LJDEQbRaFFfUPeArsuTVf3ekcZXBVEPaynkMlqQwZ2s6Y9ID97zdjL-pJcqhQvPfqVb2muWL0mlGqbooUWqiWctlSSnveyh_NGVeCtkoxffLl_7O5LGVXQVzzTunhrLnfwAzjMkdHPDrINr0tI8wxTSQF4vLBI0lxJHEiQEJ8Q99a9GS_5DQuJRaSEdyc8kVzGmAsePm_njfPv-_-bh7apz_3j5vbp9bVkbIVvQrD4BEQlQXd9VZQoaTVstOadnzg1AIGZQMPPfBBeoFhEIFp2gdGO3HePK66PsHO7HN8gbyYBNG8N1LeGsh1mxGNFF6iEDBoayUXCqTtrcJeUeWkd6xq_Vq19jm9HrDMZpcOear2jWBSdfViQlbU9YraQhWNU0hzBlefx5fo0oQh1v5tda56xvXRIl8JLqdSMoYPm4yaY2BmDczUwMx7YOY4RaykUsHTFvOnl29Y_wD37JaJ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147577134</pqid></control><display><type>article</type><title>Catalytic decarboxylation of crude oil in a fixed-bed pyrolysis reactor</title><source>SpringerLink Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Springer Nature OA Free Journals</source><creator>Adebiyi, Festus M. ; Ore, Odunayo T. ; Oyegoke, Praise B.</creator><creatorcontrib>Adebiyi, Festus M. ; Ore, Odunayo T. ; Oyegoke, Praise B.</creatorcontrib><description>This study focused on using titanium dioxide (TiO 2 ) as a catalyst to decarboxylate crude oil from the Imo oil field in Nigeria. The TiO 2 catalyst was characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). XRD investigation identified rutile-TiO 2 as the primary crystalline phase, with important diffraction peaks matching the ASTM standard for rutile. SEM showed extensive agglomerations of TiO 2 particles, whereas FT-IR detected surface functional groups such as hydroxyl, carbonyl, and aromatic. TGA identified three separate weight-loss stages, the biggest of which occurred in the devolatilization region, accounting for around 84%. The catalytic decarboxylation process revealed a considerable decrease in the total acid number (TAN) of the crude oil as the temperature increased, reaching a TAN of 0.28 mg KOH g⁻ 1 at 300 °C, with 96.35% decarboxylation. The TiO 2 -catalyzed process outperformed thermal cracking alone, resulting in less oxygenated functional groups and increased oil quality. These findings show that rutile-TiO 2 can be an excellent catalyst for decarboxylation in crude oil refining.</description><identifier>ISSN: 2730-7719</identifier><identifier>EISSN: 2730-7719</identifier><identifier>DOI: 10.1007/s43937-024-00062-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Acids ; Alternative energy ; Analysis ; Carbon ; Catalyst ; Crude oil ; Diffraction ; Energy ; Energy Efficiency ; Energy Harvesting ; Energy Storage ; Energy Systems ; Fourier transforms ; Hydrocarbons ; Infrared spectroscopy ; Laboratories ; Metal oxides ; Morphology ; Naphthenic acids ; Oil fields ; Petroleum ; Phase transitions ; Phenolphthalein ; Pyrolysis ; Refining ; Renewable and Green Energy ; Skin care products ; Spectrum analysis ; Temperature ; Titanium ; Titanium dioxide ; Total acid number ; X-rays ; Zeolites</subject><ispartof>DISCOVER ENERGY, 2024-12, Vol.4 (1), p.33-12, Article 33</ispartof><rights>The Author(s) 2024</rights><rights>COPYRIGHT 2024 Springer</rights><rights>Copyright Springer Nature B.V. Dec 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2924-367f88deaee7ba956b30374b94599052820baef7bf2f6a284d3ef83f1906f1053</cites><orcidid>0000-0003-3458-6911 ; 0000-0002-5529-1509 ; 0009-0001-8750-584X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s43937-024-00062-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/s43937-024-00062-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,27901,27902,41096,41464,42165,42533,51294,51551</link.rule.ids></links><search><creatorcontrib>Adebiyi, Festus M.</creatorcontrib><creatorcontrib>Ore, Odunayo T.</creatorcontrib><creatorcontrib>Oyegoke, Praise B.</creatorcontrib><title>Catalytic decarboxylation of crude oil in a fixed-bed pyrolysis reactor</title><title>DISCOVER ENERGY</title><addtitle>Discov Energy</addtitle><description>This study focused on using titanium dioxide (TiO 2 ) as a catalyst to decarboxylate crude oil from the Imo oil field in Nigeria. The TiO 2 catalyst was characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). XRD investigation identified rutile-TiO 2 as the primary crystalline phase, with important diffraction peaks matching the ASTM standard for rutile. SEM showed extensive agglomerations of TiO 2 particles, whereas FT-IR detected surface functional groups such as hydroxyl, carbonyl, and aromatic. TGA identified three separate weight-loss stages, the biggest of which occurred in the devolatilization region, accounting for around 84%. The catalytic decarboxylation process revealed a considerable decrease in the total acid number (TAN) of the crude oil as the temperature increased, reaching a TAN of 0.28 mg KOH g⁻ 1 at 300 °C, with 96.35% decarboxylation. The TiO 2 -catalyzed process outperformed thermal cracking alone, resulting in less oxygenated functional groups and increased oil quality. These findings show that rutile-TiO 2 can be an excellent catalyst for decarboxylation in crude oil refining.</description><subject>Acids</subject><subject>Alternative energy</subject><subject>Analysis</subject><subject>Carbon</subject><subject>Catalyst</subject><subject>Crude oil</subject><subject>Diffraction</subject><subject>Energy</subject><subject>Energy Efficiency</subject><subject>Energy Harvesting</subject><subject>Energy Storage</subject><subject>Energy Systems</subject><subject>Fourier transforms</subject><subject>Hydrocarbons</subject><subject>Infrared spectroscopy</subject><subject>Laboratories</subject><subject>Metal oxides</subject><subject>Morphology</subject><subject>Naphthenic acids</subject><subject>Oil fields</subject><subject>Petroleum</subject><subject>Phase transitions</subject><subject>Phenolphthalein</subject><subject>Pyrolysis</subject><subject>Refining</subject><subject>Renewable and Green Energy</subject><subject>Skin care products</subject><subject>Spectrum analysis</subject><subject>Temperature</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Total acid number</subject><subject>X-rays</subject><subject>Zeolites</subject><issn>2730-7719</issn><issn>2730-7719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1LJDEQbRaFFfUPeArsuTVf3ekcZXBVEPaynkMlqQwZ2s6Y9ID97zdjL-pJcqhQvPfqVb2muWL0mlGqbooUWqiWctlSSnveyh_NGVeCtkoxffLl_7O5LGVXQVzzTunhrLnfwAzjMkdHPDrINr0tI8wxTSQF4vLBI0lxJHEiQEJ8Q99a9GS_5DQuJRaSEdyc8kVzGmAsePm_njfPv-_-bh7apz_3j5vbp9bVkbIVvQrD4BEQlQXd9VZQoaTVstOadnzg1AIGZQMPPfBBeoFhEIFp2gdGO3HePK66PsHO7HN8gbyYBNG8N1LeGsh1mxGNFF6iEDBoayUXCqTtrcJeUeWkd6xq_Vq19jm9HrDMZpcOear2jWBSdfViQlbU9YraQhWNU0hzBlefx5fo0oQh1v5tda56xvXRIl8JLqdSMoYPm4yaY2BmDczUwMx7YOY4RaykUsHTFvOnl29Y_wD37JaJ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Adebiyi, Festus M.</creator><creator>Ore, Odunayo T.</creator><creator>Oyegoke, Praise B.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3458-6911</orcidid><orcidid>https://orcid.org/0000-0002-5529-1509</orcidid><orcidid>https://orcid.org/0009-0001-8750-584X</orcidid></search><sort><creationdate>20241201</creationdate><title>Catalytic decarboxylation of crude oil in a fixed-bed pyrolysis reactor</title><author>Adebiyi, Festus M. ; Ore, Odunayo T. ; Oyegoke, Praise B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2924-367f88deaee7ba956b30374b94599052820baef7bf2f6a284d3ef83f1906f1053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acids</topic><topic>Alternative energy</topic><topic>Analysis</topic><topic>Carbon</topic><topic>Catalyst</topic><topic>Crude oil</topic><topic>Diffraction</topic><topic>Energy</topic><topic>Energy Efficiency</topic><topic>Energy Harvesting</topic><topic>Energy Storage</topic><topic>Energy Systems</topic><topic>Fourier transforms</topic><topic>Hydrocarbons</topic><topic>Infrared spectroscopy</topic><topic>Laboratories</topic><topic>Metal oxides</topic><topic>Morphology</topic><topic>Naphthenic acids</topic><topic>Oil fields</topic><topic>Petroleum</topic><topic>Phase transitions</topic><topic>Phenolphthalein</topic><topic>Pyrolysis</topic><topic>Refining</topic><topic>Renewable and Green Energy</topic><topic>Skin care products</topic><topic>Spectrum analysis</topic><topic>Temperature</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Total acid number</topic><topic>X-rays</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adebiyi, Festus M.</creatorcontrib><creatorcontrib>Ore, Odunayo T.</creatorcontrib><creatorcontrib>Oyegoke, Praise B.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>DISCOVER ENERGY</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adebiyi, Festus M.</au><au>Ore, Odunayo T.</au><au>Oyegoke, Praise B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic decarboxylation of crude oil in a fixed-bed pyrolysis reactor</atitle><jtitle>DISCOVER ENERGY</jtitle><stitle>Discov Energy</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>4</volume><issue>1</issue><spage>33</spage><epage>12</epage><pages>33-12</pages><artnum>33</artnum><issn>2730-7719</issn><eissn>2730-7719</eissn><abstract>This study focused on using titanium dioxide (TiO 2 ) as a catalyst to decarboxylate crude oil from the Imo oil field in Nigeria. The TiO 2 catalyst was characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). XRD investigation identified rutile-TiO 2 as the primary crystalline phase, with important diffraction peaks matching the ASTM standard for rutile. SEM showed extensive agglomerations of TiO 2 particles, whereas FT-IR detected surface functional groups such as hydroxyl, carbonyl, and aromatic. TGA identified three separate weight-loss stages, the biggest of which occurred in the devolatilization region, accounting for around 84%. The catalytic decarboxylation process revealed a considerable decrease in the total acid number (TAN) of the crude oil as the temperature increased, reaching a TAN of 0.28 mg KOH g⁻ 1 at 300 °C, with 96.35% decarboxylation. The TiO 2 -catalyzed process outperformed thermal cracking alone, resulting in less oxygenated functional groups and increased oil quality. These findings show that rutile-TiO 2 can be an excellent catalyst for decarboxylation in crude oil refining.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s43937-024-00062-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3458-6911</orcidid><orcidid>https://orcid.org/0000-0002-5529-1509</orcidid><orcidid>https://orcid.org/0009-0001-8750-584X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2730-7719
ispartof DISCOVER ENERGY, 2024-12, Vol.4 (1), p.33-12, Article 33
issn 2730-7719
2730-7719
language eng
recordid cdi_proquest_journals_3147577134
source SpringerLink Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Springer Nature OA Free Journals
subjects Acids
Alternative energy
Analysis
Carbon
Catalyst
Crude oil
Diffraction
Energy
Energy Efficiency
Energy Harvesting
Energy Storage
Energy Systems
Fourier transforms
Hydrocarbons
Infrared spectroscopy
Laboratories
Metal oxides
Morphology
Naphthenic acids
Oil fields
Petroleum
Phase transitions
Phenolphthalein
Pyrolysis
Refining
Renewable and Green Energy
Skin care products
Spectrum analysis
Temperature
Titanium
Titanium dioxide
Total acid number
X-rays
Zeolites
title Catalytic decarboxylation of crude oil in a fixed-bed pyrolysis reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20decarboxylation%20of%20crude%20oil%20in%20a%20fixed-bed%20pyrolysis%20reactor&rft.jtitle=DISCOVER%20ENERGY&rft.au=Adebiyi,%20Festus%20M.&rft.date=2024-12-01&rft.volume=4&rft.issue=1&rft.spage=33&rft.epage=12&rft.pages=33-12&rft.artnum=33&rft.issn=2730-7719&rft.eissn=2730-7719&rft_id=info:doi/10.1007/s43937-024-00062-4&rft_dat=%3Cgale_doaj_%3EA820761295%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147577134&rft_id=info:pmid/&rft_galeid=A820761295&rft_doaj_id=oai_doaj_org_article_43d4e33a89bb4237a4b6b7e6707c4dc1&rfr_iscdi=true