A parametric algorithm is optimal for non-parametric regression of smooth functions
We address the regression problem for a general function \(f:[-1,1]^d\to \mathbb R\) when the learner selects the training points \(\{x_i\}_{i=1}^n\) to achieve a uniform error bound across the entire domain. In this setting, known historically as nonparametric regression, we aim to establish a samp...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Maran, Davide Restelli, Marcello |
description | We address the regression problem for a general function \(f:[-1,1]^d\to \mathbb R\) when the learner selects the training points \(\{x_i\}_{i=1}^n\) to achieve a uniform error bound across the entire domain. In this setting, known historically as nonparametric regression, we aim to establish a sample complexity bound that depends solely on the function's degree of smoothness. Assuming periodicity at the domain boundaries, we introduce PADUA, an algorithm that, with high probability, provides performance guarantees optimal up to constant or logarithmic factors across all problem parameters. Notably, PADUA is the first parametric algorithm with optimal sample complexity for this setting. Due to this feature, we prove that, differently from the non-parametric state of the art, PADUA enjoys optimal space complexity in the prediction phase. To validate these results, we perform numerical experiments over functions coming from real audio data, where PADUA shows comparable performance to state-of-the-art methods, while requiring only a fraction of the computational time. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3147567228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147567228</sourcerecordid><originalsourceid>FETCH-proquest_journals_31475672283</originalsourceid><addsrcrecordid>eNqNjr0KwjAURoMgWLTvcMG50Cb9W0UUd91LKEmb0uTWe9P3t4ODo9MH55zh24lEKlVkbSnlQaTMU57nsm5kValEPC-waNLeRHI96HlAcnH04Bhwic7rGSwSBAzZT0dmIMPsMABaYI8YR7Br6OOG-CT2Vs9s0u8exfl-e10f2UL4Xg3HbsKVwqY6VZRNtX2Rrfqv-gCMjUDk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147567228</pqid></control><display><type>article</type><title>A parametric algorithm is optimal for non-parametric regression of smooth functions</title><source>Free E- Journals</source><creator>Maran, Davide ; Restelli, Marcello</creator><creatorcontrib>Maran, Davide ; Restelli, Marcello</creatorcontrib><description>We address the regression problem for a general function \(f:[-1,1]^d\to \mathbb R\) when the learner selects the training points \(\{x_i\}_{i=1}^n\) to achieve a uniform error bound across the entire domain. In this setting, known historically as nonparametric regression, we aim to establish a sample complexity bound that depends solely on the function's degree of smoothness. Assuming periodicity at the domain boundaries, we introduce PADUA, an algorithm that, with high probability, provides performance guarantees optimal up to constant or logarithmic factors across all problem parameters. Notably, PADUA is the first parametric algorithm with optimal sample complexity for this setting. Due to this feature, we prove that, differently from the non-parametric state of the art, PADUA enjoys optimal space complexity in the prediction phase. To validate these results, we perform numerical experiments over functions coming from real audio data, where PADUA shows comparable performance to state-of-the-art methods, while requiring only a fraction of the computational time.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Audio data ; Complexity ; Computing time ; Domains ; Regression ; Smoothness ; Statistical analysis</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Maran, Davide</creatorcontrib><creatorcontrib>Restelli, Marcello</creatorcontrib><title>A parametric algorithm is optimal for non-parametric regression of smooth functions</title><title>arXiv.org</title><description>We address the regression problem for a general function \(f:[-1,1]^d\to \mathbb R\) when the learner selects the training points \(\{x_i\}_{i=1}^n\) to achieve a uniform error bound across the entire domain. In this setting, known historically as nonparametric regression, we aim to establish a sample complexity bound that depends solely on the function's degree of smoothness. Assuming periodicity at the domain boundaries, we introduce PADUA, an algorithm that, with high probability, provides performance guarantees optimal up to constant or logarithmic factors across all problem parameters. Notably, PADUA is the first parametric algorithm with optimal sample complexity for this setting. Due to this feature, we prove that, differently from the non-parametric state of the art, PADUA enjoys optimal space complexity in the prediction phase. To validate these results, we perform numerical experiments over functions coming from real audio data, where PADUA shows comparable performance to state-of-the-art methods, while requiring only a fraction of the computational time.</description><subject>Algorithms</subject><subject>Audio data</subject><subject>Complexity</subject><subject>Computing time</subject><subject>Domains</subject><subject>Regression</subject><subject>Smoothness</subject><subject>Statistical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjr0KwjAURoMgWLTvcMG50Cb9W0UUd91LKEmb0uTWe9P3t4ODo9MH55zh24lEKlVkbSnlQaTMU57nsm5kValEPC-waNLeRHI96HlAcnH04Bhwic7rGSwSBAzZT0dmIMPsMABaYI8YR7Br6OOG-CT2Vs9s0u8exfl-e10f2UL4Xg3HbsKVwqY6VZRNtX2Rrfqv-gCMjUDk</recordid><startdate>20241219</startdate><enddate>20241219</enddate><creator>Maran, Davide</creator><creator>Restelli, Marcello</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241219</creationdate><title>A parametric algorithm is optimal for non-parametric regression of smooth functions</title><author>Maran, Davide ; Restelli, Marcello</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31475672283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Audio data</topic><topic>Complexity</topic><topic>Computing time</topic><topic>Domains</topic><topic>Regression</topic><topic>Smoothness</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Maran, Davide</creatorcontrib><creatorcontrib>Restelli, Marcello</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maran, Davide</au><au>Restelli, Marcello</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A parametric algorithm is optimal for non-parametric regression of smooth functions</atitle><jtitle>arXiv.org</jtitle><date>2024-12-19</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We address the regression problem for a general function \(f:[-1,1]^d\to \mathbb R\) when the learner selects the training points \(\{x_i\}_{i=1}^n\) to achieve a uniform error bound across the entire domain. In this setting, known historically as nonparametric regression, we aim to establish a sample complexity bound that depends solely on the function's degree of smoothness. Assuming periodicity at the domain boundaries, we introduce PADUA, an algorithm that, with high probability, provides performance guarantees optimal up to constant or logarithmic factors across all problem parameters. Notably, PADUA is the first parametric algorithm with optimal sample complexity for this setting. Due to this feature, we prove that, differently from the non-parametric state of the art, PADUA enjoys optimal space complexity in the prediction phase. To validate these results, we perform numerical experiments over functions coming from real audio data, where PADUA shows comparable performance to state-of-the-art methods, while requiring only a fraction of the computational time.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_3147567228 |
source | Free E- Journals |
subjects | Algorithms Audio data Complexity Computing time Domains Regression Smoothness Statistical analysis |
title | A parametric algorithm is optimal for non-parametric regression of smooth functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A24%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20parametric%20algorithm%20is%20optimal%20for%20non-parametric%20regression%20of%20smooth%20functions&rft.jtitle=arXiv.org&rft.au=Maran,%20Davide&rft.date=2024-12-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E3147567228%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147567228&rft_id=info:pmid/&rfr_iscdi=true |