Navigating urban congestion: Optimizing LSTM with RNN in traffic prediction
Urban congestion hinders transportation systems, requiring creative traffic forecasts. Using Recurrent Neural Networks (RNNs), this study optimizes LSTM networks for traffic prediction. Predictive models should be more accurate and adaptable. The hybrid LSTM-RNN architecture captures traffic data’s...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!