Navigating urban congestion: Optimizing LSTM with RNN in traffic prediction

Urban congestion hinders transportation systems, requiring creative traffic forecasts. Using Recurrent Neural Networks (RNNs), this study optimizes LSTM networks for traffic prediction. Predictive models should be more accurate and adaptable. The hybrid LSTM-RNN architecture captures traffic data’s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dalal, Surjeet, Jaglan, Vivek, Agrawal, Akshat, Kumar, Ajay, Joshi, Shashikant J., Dahiya, Mamta
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!