An Adaptable Pricing-Based Resource Allocation Scheme Considering User Offloading Needs in Edge Computing

Multiaccess edge computing (MEC) is extensively utilized within the Internet of Things (IoT), wherein end-users pay services to meet the latency demands of their respective tasks. The pricing is impacted not solely by the quantity of data offloaded by the user but also associated with the leased com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2025-01, Vol.12 (1), p.582-594
Hauptverfasser: Liao, Zhuofan, Han, Xiyu, Tang, Xiaoyong, Feng, Chaochao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 594
container_issue 1
container_start_page 582
container_title IEEE internet of things journal
container_volume 12
creator Liao, Zhuofan
Han, Xiyu
Tang, Xiaoyong
Feng, Chaochao
description Multiaccess edge computing (MEC) is extensively utilized within the Internet of Things (IoT), wherein end-users pay services to meet the latency demands of their respective tasks. The pricing is impacted not solely by the quantity of data offloaded by the user but also associated with the leased computing and communication resources. Nevertheless, prevailing pricing strategies seldom account for the personalized resource requisites during user offloading. In this article, we present an adaptive pricing-oriented approach for concomitant task offloading and resource allocation, considering hybrid resources, comprising two key components. First, we propose a differential pricing framework for communication and computation resources, where the unit price will be influenced by the proportion of resources rented by users. Subsequently, we design a two-stage Stackelberg game model: 1) employing convex optimization theory to mitigate problem intricacies and 2) employing gradient descent to ascertain the potentially optimal price, thus achieving a balance between minimizing user expenses and maximizing server profitability. Simulation outcomes demonstrate that our approach slashes user costs by 23.3% and enhances average server revenue by 65.6% compared to a flat pricing model with a high-user request rate (five user-initiated requests per 100 ms). This maintains server occupancy within 60% to 80%, thereby alleviating user queuing and refining user Quality of Experience (QoE).
doi_str_mv 10.1109/JIOT.2024.3464641
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3147527676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10684610</ieee_id><sourcerecordid>3147527676</sourcerecordid><originalsourceid>FETCH-LOGICAL-i496-99c403802801f2b083cd1e72fbacf00e8377279afdff92b9d725966c9e22be0e3</originalsourceid><addsrcrecordid>eNotz99LwzAQB_AgCI65P0DwIeBz5-XHkuaxjqmT4UTnc0mTy8zo2tp0D_73dij3cNyXD3ccITcM5oyBuX9Zb3dzDlzOhVRjsQsy4YLrTCrFr8gspQMAjHTBjJqQWDS08LYbbFUjfeuji80-e7AJPX3H1J56h7So69bZIbYN_XBfeES6bJsUPfYjpp8Je7oNoW6tP8-viD7R2NCV35_lsTsNY35NLoOtE87--5TsHle75XO22T6tl8Umi9KozBgnQeTAc2CBV5AL5xlqHirrAgDmQmuujQ0-BMMr4zVfGKWcQc4rBBRTcve3tuvb7xOmoTyMTzTjxVIwqRdcK61GdfunIiKWXR-Ptv8pGahcKgbiF1CcYSU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147527676</pqid></control><display><type>article</type><title>An Adaptable Pricing-Based Resource Allocation Scheme Considering User Offloading Needs in Edge Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Liao, Zhuofan ; Han, Xiyu ; Tang, Xiaoyong ; Feng, Chaochao</creator><creatorcontrib>Liao, Zhuofan ; Han, Xiyu ; Tang, Xiaoyong ; Feng, Chaochao</creatorcontrib><description>Multiaccess edge computing (MEC) is extensively utilized within the Internet of Things (IoT), wherein end-users pay services to meet the latency demands of their respective tasks. The pricing is impacted not solely by the quantity of data offloaded by the user but also associated with the leased computing and communication resources. Nevertheless, prevailing pricing strategies seldom account for the personalized resource requisites during user offloading. In this article, we present an adaptive pricing-oriented approach for concomitant task offloading and resource allocation, considering hybrid resources, comprising two key components. First, we propose a differential pricing framework for communication and computation resources, where the unit price will be influenced by the proportion of resources rented by users. Subsequently, we design a two-stage Stackelberg game model: 1) employing convex optimization theory to mitigate problem intricacies and 2) employing gradient descent to ascertain the potentially optimal price, thus achieving a balance between minimizing user expenses and maximizing server profitability. Simulation outcomes demonstrate that our approach slashes user costs by 23.3% and enhances average server revenue by 65.6% compared to a flat pricing model with a high-user request rate (five user-initiated requests per 100 ms). This maintains server occupancy within 60% to 80%, thereby alleviating user queuing and refining user Quality of Experience (QoE).</description><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3464641</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computation offloading ; Computational offloading ; Convexity ; Costs ; Design optimization ; Edge computing ; Game theory ; Games ; Internet of Things ; Mobile computing ; multiple-access edge computing (MEC) ; offloading decision ; Optimization ; Pricing ; Queueing ; Resource allocation ; Resource management ; resources allocation ; Servers ; Stackelberg game ; User experience</subject><ispartof>IEEE internet of things journal, 2025-01, Vol.12 (1), p.582-594</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6661-5900 ; 0000-0002-1889-6912 ; 0000-0002-0151-7963 ; 0009-0000-4973-8135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10684610$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10684610$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liao, Zhuofan</creatorcontrib><creatorcontrib>Han, Xiyu</creatorcontrib><creatorcontrib>Tang, Xiaoyong</creatorcontrib><creatorcontrib>Feng, Chaochao</creatorcontrib><title>An Adaptable Pricing-Based Resource Allocation Scheme Considering User Offloading Needs in Edge Computing</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Multiaccess edge computing (MEC) is extensively utilized within the Internet of Things (IoT), wherein end-users pay services to meet the latency demands of their respective tasks. The pricing is impacted not solely by the quantity of data offloaded by the user but also associated with the leased computing and communication resources. Nevertheless, prevailing pricing strategies seldom account for the personalized resource requisites during user offloading. In this article, we present an adaptive pricing-oriented approach for concomitant task offloading and resource allocation, considering hybrid resources, comprising two key components. First, we propose a differential pricing framework for communication and computation resources, where the unit price will be influenced by the proportion of resources rented by users. Subsequently, we design a two-stage Stackelberg game model: 1) employing convex optimization theory to mitigate problem intricacies and 2) employing gradient descent to ascertain the potentially optimal price, thus achieving a balance between minimizing user expenses and maximizing server profitability. Simulation outcomes demonstrate that our approach slashes user costs by 23.3% and enhances average server revenue by 65.6% compared to a flat pricing model with a high-user request rate (five user-initiated requests per 100 ms). This maintains server occupancy within 60% to 80%, thereby alleviating user queuing and refining user Quality of Experience (QoE).</description><subject>Computation offloading</subject><subject>Computational offloading</subject><subject>Convexity</subject><subject>Costs</subject><subject>Design optimization</subject><subject>Edge computing</subject><subject>Game theory</subject><subject>Games</subject><subject>Internet of Things</subject><subject>Mobile computing</subject><subject>multiple-access edge computing (MEC)</subject><subject>offloading decision</subject><subject>Optimization</subject><subject>Pricing</subject><subject>Queueing</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>resources allocation</subject><subject>Servers</subject><subject>Stackelberg game</subject><subject>User experience</subject><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotz99LwzAQB_AgCI65P0DwIeBz5-XHkuaxjqmT4UTnc0mTy8zo2tp0D_73dij3cNyXD3ccITcM5oyBuX9Zb3dzDlzOhVRjsQsy4YLrTCrFr8gspQMAjHTBjJqQWDS08LYbbFUjfeuji80-e7AJPX3H1J56h7So69bZIbYN_XBfeES6bJsUPfYjpp8Je7oNoW6tP8-viD7R2NCV35_lsTsNY35NLoOtE87--5TsHle75XO22T6tl8Umi9KozBgnQeTAc2CBV5AL5xlqHirrAgDmQmuujQ0-BMMr4zVfGKWcQc4rBBRTcve3tuvb7xOmoTyMTzTjxVIwqRdcK61GdfunIiKWXR-Ptv8pGahcKgbiF1CcYSU</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Liao, Zhuofan</creator><creator>Han, Xiyu</creator><creator>Tang, Xiaoyong</creator><creator>Feng, Chaochao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6661-5900</orcidid><orcidid>https://orcid.org/0000-0002-1889-6912</orcidid><orcidid>https://orcid.org/0000-0002-0151-7963</orcidid><orcidid>https://orcid.org/0009-0000-4973-8135</orcidid></search><sort><creationdate>20250101</creationdate><title>An Adaptable Pricing-Based Resource Allocation Scheme Considering User Offloading Needs in Edge Computing</title><author>Liao, Zhuofan ; Han, Xiyu ; Tang, Xiaoyong ; Feng, Chaochao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i496-99c403802801f2b083cd1e72fbacf00e8377279afdff92b9d725966c9e22be0e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Computation offloading</topic><topic>Computational offloading</topic><topic>Convexity</topic><topic>Costs</topic><topic>Design optimization</topic><topic>Edge computing</topic><topic>Game theory</topic><topic>Games</topic><topic>Internet of Things</topic><topic>Mobile computing</topic><topic>multiple-access edge computing (MEC)</topic><topic>offloading decision</topic><topic>Optimization</topic><topic>Pricing</topic><topic>Queueing</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>resources allocation</topic><topic>Servers</topic><topic>Stackelberg game</topic><topic>User experience</topic><toplevel>online_resources</toplevel><creatorcontrib>Liao, Zhuofan</creatorcontrib><creatorcontrib>Han, Xiyu</creatorcontrib><creatorcontrib>Tang, Xiaoyong</creatorcontrib><creatorcontrib>Feng, Chaochao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liao, Zhuofan</au><au>Han, Xiyu</au><au>Tang, Xiaoyong</au><au>Feng, Chaochao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Adaptable Pricing-Based Resource Allocation Scheme Considering User Offloading Needs in Edge Computing</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2025-01-01</date><risdate>2025</risdate><volume>12</volume><issue>1</issue><spage>582</spage><epage>594</epage><pages>582-594</pages><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Multiaccess edge computing (MEC) is extensively utilized within the Internet of Things (IoT), wherein end-users pay services to meet the latency demands of their respective tasks. The pricing is impacted not solely by the quantity of data offloaded by the user but also associated with the leased computing and communication resources. Nevertheless, prevailing pricing strategies seldom account for the personalized resource requisites during user offloading. In this article, we present an adaptive pricing-oriented approach for concomitant task offloading and resource allocation, considering hybrid resources, comprising two key components. First, we propose a differential pricing framework for communication and computation resources, where the unit price will be influenced by the proportion of resources rented by users. Subsequently, we design a two-stage Stackelberg game model: 1) employing convex optimization theory to mitigate problem intricacies and 2) employing gradient descent to ascertain the potentially optimal price, thus achieving a balance between minimizing user expenses and maximizing server profitability. Simulation outcomes demonstrate that our approach slashes user costs by 23.3% and enhances average server revenue by 65.6% compared to a flat pricing model with a high-user request rate (five user-initiated requests per 100 ms). This maintains server occupancy within 60% to 80%, thereby alleviating user queuing and refining user Quality of Experience (QoE).</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2024.3464641</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6661-5900</orcidid><orcidid>https://orcid.org/0000-0002-1889-6912</orcidid><orcidid>https://orcid.org/0000-0002-0151-7963</orcidid><orcidid>https://orcid.org/0009-0000-4973-8135</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2327-4662
ispartof IEEE internet of things journal, 2025-01, Vol.12 (1), p.582-594
issn 2327-4662
language eng
recordid cdi_proquest_journals_3147527676
source IEEE Electronic Library (IEL)
subjects Computation offloading
Computational offloading
Convexity
Costs
Design optimization
Edge computing
Game theory
Games
Internet of Things
Mobile computing
multiple-access edge computing (MEC)
offloading decision
Optimization
Pricing
Queueing
Resource allocation
Resource management
resources allocation
Servers
Stackelberg game
User experience
title An Adaptable Pricing-Based Resource Allocation Scheme Considering User Offloading Needs in Edge Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Adaptable%20Pricing-Based%20Resource%20Allocation%20Scheme%20Considering%20User%20Offloading%20Needs%20in%20Edge%20Computing&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Liao,%20Zhuofan&rft.date=2025-01-01&rft.volume=12&rft.issue=1&rft.spage=582&rft.epage=594&rft.pages=582-594&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2024.3464641&rft_dat=%3Cproquest_RIE%3E3147527676%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147527676&rft_id=info:pmid/&rft_ieee_id=10684610&rfr_iscdi=true