mmHPE: Robust Multiscale 3-D Human Pose Estimation Using a Single mmWave Radar

Nowadays, human pose estimation (HPE) is widely used in several application areas. The current mainstream method based on vision suffers from privacy leakage and relies on lighting conditions. To adopt a more privacy-preserving and pervasive HPE approach, recent studies have implemented 3-D HPE usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2025-01, Vol.12 (1), p.1032
Hauptverfasser: Wu, Yingxiao, Jiang, Zhongmin, Ni, Haocheng, Mao, Changlin, Zhou, Zhiyuan, Wang, Wenxiang, Han, Jianping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1032
container_title IEEE internet of things journal
container_volume 12
creator Wu, Yingxiao
Jiang, Zhongmin
Ni, Haocheng
Mao, Changlin
Zhou, Zhiyuan
Wang, Wenxiang
Han, Jianping
description Nowadays, human pose estimation (HPE) is widely used in several application areas. The current mainstream method based on vision suffers from privacy leakage and relies on lighting conditions. To adopt a more privacy-preserving and pervasive HPE approach, recent studies have implemented 3-D HPE using commodity radio frequency (RF) signals. However, RF-based HPE faces issues, such as resolution limitations and complex data processing, which makes it challenging to extract and utilize multiscale human activity features. In this article, we propose mmHPE, a novel approach to detect and reconstruct 3-D human posture in multiscale scenarios using a single millimeter wave radar. mmHPE consists of three main parts. Specifically, we develop a 3-D target detection network (TDN) and design an optimized loss function for it to enhance its 3-D target bounding box (BBox) detection capability in radar 3-D space. Next, an enhanced point cloud generator (EPCG) algorithm based on the 3-D target BBox is proposed to generate a stable and accurate point cloud of the target. Furthermore, we design a multiscale coarse-fine HPE network (CFN) ranging from approximate to precise estimation for reconstructing a 3-D skeleton from point cloud data. Extensive experiments demonstrate that our method surpasses other methods for 3-D human pose reconstruction in multiscale scenes, with an average error of 4.50 cm. Our method is robust enough to accurately estimate the target pose even in occluded or low-light scenes.
doi_str_mv 10.1109/JIOT.2024.3476350
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_3147527030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147527030</sourcerecordid><originalsourceid>FETCH-proquest_journals_31475270303</originalsourceid><addsrcrecordid>eNqNys2KwjAUQOEgCCPqA8zuguvWm6Q_6FYrVVCL4-BSokapNI32Jj6_XfgArs7ifIz9cgw5x8l4tdzuQ4EiCmWUJjLGDusJKdIgShLxw4ZEd0RsacwnSY9tjMmLbAo7e_LkYO0rV9JZVRpkMIfcG1VDYUlDRq40ypW2hn8q6xso-GvTQmMO6qVhpy6qGbDuVVWkh5_22WiR7Wd58Gjs02tyx7v1Td2uo-RRGosUJcrv1BtssUHP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147527030</pqid></control><display><type>article</type><title>mmHPE: Robust Multiscale 3-D Human Pose Estimation Using a Single mmWave Radar</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Yingxiao ; Jiang, Zhongmin ; Ni, Haocheng ; Mao, Changlin ; Zhou, Zhiyuan ; Wang, Wenxiang ; Han, Jianping</creator><creatorcontrib>Wu, Yingxiao ; Jiang, Zhongmin ; Ni, Haocheng ; Mao, Changlin ; Zhou, Zhiyuan ; Wang, Wenxiang ; Han, Jianping</creatorcontrib><description>Nowadays, human pose estimation (HPE) is widely used in several application areas. The current mainstream method based on vision suffers from privacy leakage and relies on lighting conditions. To adopt a more privacy-preserving and pervasive HPE approach, recent studies have implemented 3-D HPE using commodity radio frequency (RF) signals. However, RF-based HPE faces issues, such as resolution limitations and complex data processing, which makes it challenging to extract and utilize multiscale human activity features. In this article, we propose mmHPE, a novel approach to detect and reconstruct 3-D human posture in multiscale scenarios using a single millimeter wave radar. mmHPE consists of three main parts. Specifically, we develop a 3-D target detection network (TDN) and design an optimized loss function for it to enhance its 3-D target bounding box (BBox) detection capability in radar 3-D space. Next, an enhanced point cloud generator (EPCG) algorithm based on the 3-D target BBox is proposed to generate a stable and accurate point cloud of the target. Furthermore, we design a multiscale coarse-fine HPE network (CFN) ranging from approximate to precise estimation for reconstructing a 3-D skeleton from point cloud data. Extensive experiments demonstrate that our method surpasses other methods for 3-D human pose reconstruction in multiscale scenes, with an average error of 4.50 cm. Our method is robust enough to accurately estimate the target pose even in occluded or low-light scenes.</description><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2024.3476350</identifier><language>eng</language><publisher>Piscataway: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Algorithms ; Data processing ; Image reconstruction ; Millimeter waves ; Pose estimation ; Privacy ; Radar detection ; Radio frequency ; Radio signals ; Robustness ; Target detection ; Three dimensional models</subject><ispartof>IEEE internet of things journal, 2025-01, Vol.12 (1), p.1032</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Yingxiao</creatorcontrib><creatorcontrib>Jiang, Zhongmin</creatorcontrib><creatorcontrib>Ni, Haocheng</creatorcontrib><creatorcontrib>Mao, Changlin</creatorcontrib><creatorcontrib>Zhou, Zhiyuan</creatorcontrib><creatorcontrib>Wang, Wenxiang</creatorcontrib><creatorcontrib>Han, Jianping</creatorcontrib><title>mmHPE: Robust Multiscale 3-D Human Pose Estimation Using a Single mmWave Radar</title><title>IEEE internet of things journal</title><description>Nowadays, human pose estimation (HPE) is widely used in several application areas. The current mainstream method based on vision suffers from privacy leakage and relies on lighting conditions. To adopt a more privacy-preserving and pervasive HPE approach, recent studies have implemented 3-D HPE using commodity radio frequency (RF) signals. However, RF-based HPE faces issues, such as resolution limitations and complex data processing, which makes it challenging to extract and utilize multiscale human activity features. In this article, we propose mmHPE, a novel approach to detect and reconstruct 3-D human posture in multiscale scenarios using a single millimeter wave radar. mmHPE consists of three main parts. Specifically, we develop a 3-D target detection network (TDN) and design an optimized loss function for it to enhance its 3-D target bounding box (BBox) detection capability in radar 3-D space. Next, an enhanced point cloud generator (EPCG) algorithm based on the 3-D target BBox is proposed to generate a stable and accurate point cloud of the target. Furthermore, we design a multiscale coarse-fine HPE network (CFN) ranging from approximate to precise estimation for reconstructing a 3-D skeleton from point cloud data. Extensive experiments demonstrate that our method surpasses other methods for 3-D human pose reconstruction in multiscale scenes, with an average error of 4.50 cm. Our method is robust enough to accurately estimate the target pose even in occluded or low-light scenes.</description><subject>Algorithms</subject><subject>Data processing</subject><subject>Image reconstruction</subject><subject>Millimeter waves</subject><subject>Pose estimation</subject><subject>Privacy</subject><subject>Radar detection</subject><subject>Radio frequency</subject><subject>Radio signals</subject><subject>Robustness</subject><subject>Target detection</subject><subject>Three dimensional models</subject><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqNys2KwjAUQOEgCCPqA8zuguvWm6Q_6FYrVVCL4-BSokapNI32Jj6_XfgArs7ifIz9cgw5x8l4tdzuQ4EiCmWUJjLGDusJKdIgShLxw4ZEd0RsacwnSY9tjMmLbAo7e_LkYO0rV9JZVRpkMIfcG1VDYUlDRq40ypW2hn8q6xso-GvTQmMO6qVhpy6qGbDuVVWkh5_22WiR7Wd58Gjs02tyx7v1Td2uo-RRGosUJcrv1BtssUHP</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Wu, Yingxiao</creator><creator>Jiang, Zhongmin</creator><creator>Ni, Haocheng</creator><creator>Mao, Changlin</creator><creator>Zhou, Zhiyuan</creator><creator>Wang, Wenxiang</creator><creator>Han, Jianping</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20250101</creationdate><title>mmHPE: Robust Multiscale 3-D Human Pose Estimation Using a Single mmWave Radar</title><author>Wu, Yingxiao ; Jiang, Zhongmin ; Ni, Haocheng ; Mao, Changlin ; Zhou, Zhiyuan ; Wang, Wenxiang ; Han, Jianping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_31475270303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Data processing</topic><topic>Image reconstruction</topic><topic>Millimeter waves</topic><topic>Pose estimation</topic><topic>Privacy</topic><topic>Radar detection</topic><topic>Radio frequency</topic><topic>Radio signals</topic><topic>Robustness</topic><topic>Target detection</topic><topic>Three dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yingxiao</creatorcontrib><creatorcontrib>Jiang, Zhongmin</creatorcontrib><creatorcontrib>Ni, Haocheng</creatorcontrib><creatorcontrib>Mao, Changlin</creatorcontrib><creatorcontrib>Zhou, Zhiyuan</creatorcontrib><creatorcontrib>Wang, Wenxiang</creatorcontrib><creatorcontrib>Han, Jianping</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yingxiao</au><au>Jiang, Zhongmin</au><au>Ni, Haocheng</au><au>Mao, Changlin</au><au>Zhou, Zhiyuan</au><au>Wang, Wenxiang</au><au>Han, Jianping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mmHPE: Robust Multiscale 3-D Human Pose Estimation Using a Single mmWave Radar</atitle><jtitle>IEEE internet of things journal</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>12</volume><issue>1</issue><spage>1032</spage><pages>1032-</pages><eissn>2327-4662</eissn><abstract>Nowadays, human pose estimation (HPE) is widely used in several application areas. The current mainstream method based on vision suffers from privacy leakage and relies on lighting conditions. To adopt a more privacy-preserving and pervasive HPE approach, recent studies have implemented 3-D HPE using commodity radio frequency (RF) signals. However, RF-based HPE faces issues, such as resolution limitations and complex data processing, which makes it challenging to extract and utilize multiscale human activity features. In this article, we propose mmHPE, a novel approach to detect and reconstruct 3-D human posture in multiscale scenarios using a single millimeter wave radar. mmHPE consists of three main parts. Specifically, we develop a 3-D target detection network (TDN) and design an optimized loss function for it to enhance its 3-D target bounding box (BBox) detection capability in radar 3-D space. Next, an enhanced point cloud generator (EPCG) algorithm based on the 3-D target BBox is proposed to generate a stable and accurate point cloud of the target. Furthermore, we design a multiscale coarse-fine HPE network (CFN) ranging from approximate to precise estimation for reconstructing a 3-D skeleton from point cloud data. Extensive experiments demonstrate that our method surpasses other methods for 3-D human pose reconstruction in multiscale scenes, with an average error of 4.50 cm. Our method is robust enough to accurately estimate the target pose even in occluded or low-light scenes.</abstract><cop>Piscataway</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/JIOT.2024.3476350</doi></addata></record>
fulltext fulltext
identifier EISSN: 2327-4662
ispartof IEEE internet of things journal, 2025-01, Vol.12 (1), p.1032
issn 2327-4662
language eng
recordid cdi_proquest_journals_3147527030
source IEEE Electronic Library (IEL)
subjects Algorithms
Data processing
Image reconstruction
Millimeter waves
Pose estimation
Privacy
Radar detection
Radio frequency
Radio signals
Robustness
Target detection
Three dimensional models
title mmHPE: Robust Multiscale 3-D Human Pose Estimation Using a Single mmWave Radar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A02%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mmHPE:%20Robust%20Multiscale%203-D%20Human%20Pose%20Estimation%20Using%20a%20Single%20mmWave%20Radar&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Wu,%20Yingxiao&rft.date=2025-01-01&rft.volume=12&rft.issue=1&rft.spage=1032&rft.pages=1032-&rft.eissn=2327-4662&rft_id=info:doi/10.1109/JIOT.2024.3476350&rft_dat=%3Cproquest%3E3147527030%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147527030&rft_id=info:pmid/&rfr_iscdi=true