Deep learning‐based inversion with discrete cosine transform discretization for two‐dimensional basement relief imaging of sedimentary basins from observed gravity anomalies
Sedimentary basins, integral to Earth's geological history and energy resource exploration, undergo complex changes driven by sedimentation, subsidence and geological processes. Gravity anomaly inversion is a crucial technique offering insights into subsurface structures and density variations....
Gespeichert in:
Veröffentlicht in: | Geophysical Prospecting 2025-01, Vol.73 (1), p.113-129 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 129 |
---|---|
container_issue | 1 |
container_start_page | 113 |
container_title | Geophysical Prospecting |
container_volume | 73 |
creator | Roy, Arka Ekinci, Yunus Levent Balkaya, Çağlayan Ai, Hanbing |
description | Sedimentary basins, integral to Earth's geological history and energy resource exploration, undergo complex changes driven by sedimentation, subsidence and geological processes. Gravity anomaly inversion is a crucial technique offering insights into subsurface structures and density variations. Our study addresses the challenge of complex subsurface structure assessment by leveraging deep neural networks to invert observed gravity anomalies. Optimization approaches traditionally incorporate known density distributions obtained from borehole data or geological logging for inverting basement depth in sedimentary basins using observed gravity anomalies. Our study explores the application of deep neural networks in accurate architectural assessment of sedimentary basins and demonstrates their significance in mineral and hydrocarbon exploration. Recent years have witnessed a surge in the use of machine learning in geophysics, with deep learning models playing a pivotal role. Integrating deep neural networks, such as the feedforward neural networks, has revolutionized subsurface density distribution and basement depth estimation. This study introduces a deep neural network specifically tailored for inverting observed gravity anomalies to estimate two‐dimensional basement relief topographies in sedimentary basins. To enhance computational efficiency, a one‐dimensional discrete cosine transform based discretization approach is employed. Synthetic data, generated using non‐Gaussian fractals, compensates for the scarcity of true datasets for training the deep neural network model. The algorithm's robustness is validated through noise introduction with comparisons against an efficient and traditional global optimization‐based approach. Gravity anomalies of real sedimentary basins further validate the algorithm's efficacy, establishing it as a promising methodology for accurate and efficient subsurface imaging in geological exploration. |
doi_str_mv | 10.1111/1365-2478.13647 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3147431717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3147431717</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2407-99b97c16193bbd04da5550af7be1dd37e83fe557a3fffcfca6b5edacfe1daa5f3</originalsourceid><addsrcrecordid>eNqFkc1OAyEUhYnRxPqzdkviehTKUNql8aeamGiMrsmdmUvFzEAFbFNXPoKv4iv5JDJW3coGuHznXG4OIQecHfG8jrkYyWJYqvFRPpVqgwz-KptkwBgfFWM2lNtkJ8YnxgSTshyQjzPEOW0RgrNu9vn2XkHEhlq3wBCtd3Rp0yNtbKwDJqS1j9YhTQFcND50vy_2FVJP5xpNS599Gtuh6x2gpb1nviUasLVoqO1glrtRb2hu1oMJwqrHrIvUBN9RX0UMi_yTWYCFTSsKzneQ1XGPbBloI-7_7Lvk4eL8_vSyuL6ZXp2eXBf1sGSqmEyqiar5iE9EVTWsbEBKycCoCnnTCIVjYVBKBcIYU5saRpXEBmqTnwGkEbvkcO07D_75BWPST_4l5HGiFrxUpeCKq0wdr6k6-BgDGj0Pebyw0pzpPhfdp6D7FPR3Llkh14qlbXH1H66nt3dr3Rey_Zjc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3147431717</pqid></control><display><type>article</type><title>Deep learning‐based inversion with discrete cosine transform discretization for two‐dimensional basement relief imaging of sedimentary basins from observed gravity anomalies</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Roy, Arka ; Ekinci, Yunus Levent ; Balkaya, Çağlayan ; Ai, Hanbing</creator><creatorcontrib>Roy, Arka ; Ekinci, Yunus Levent ; Balkaya, Çağlayan ; Ai, Hanbing</creatorcontrib><description>Sedimentary basins, integral to Earth's geological history and energy resource exploration, undergo complex changes driven by sedimentation, subsidence and geological processes. Gravity anomaly inversion is a crucial technique offering insights into subsurface structures and density variations. Our study addresses the challenge of complex subsurface structure assessment by leveraging deep neural networks to invert observed gravity anomalies. Optimization approaches traditionally incorporate known density distributions obtained from borehole data or geological logging for inverting basement depth in sedimentary basins using observed gravity anomalies. Our study explores the application of deep neural networks in accurate architectural assessment of sedimentary basins and demonstrates their significance in mineral and hydrocarbon exploration. Recent years have witnessed a surge in the use of machine learning in geophysics, with deep learning models playing a pivotal role. Integrating deep neural networks, such as the feedforward neural networks, has revolutionized subsurface density distribution and basement depth estimation. This study introduces a deep neural network specifically tailored for inverting observed gravity anomalies to estimate two‐dimensional basement relief topographies in sedimentary basins. To enhance computational efficiency, a one‐dimensional discrete cosine transform based discretization approach is employed. Synthetic data, generated using non‐Gaussian fractals, compensates for the scarcity of true datasets for training the deep neural network model. The algorithm's robustness is validated through noise introduction with comparisons against an efficient and traditional global optimization‐based approach. Gravity anomalies of real sedimentary basins further validate the algorithm's efficacy, establishing it as a promising methodology for accurate and efficient subsurface imaging in geological exploration.</description><identifier>ISSN: 0016-8025</identifier><identifier>EISSN: 1365-2478</identifier><identifier>DOI: 10.1111/1365-2478.13647</identifier><language>eng</language><publisher>Houten: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Artificial neural networks ; basement depth ; Basements ; Boreholes ; Data logging ; Deep learning ; deep neural network ; density contrast ; Density distribution ; Discrete cosine transform ; Discretization ; Energy sources ; Fractal transforms ; Fractals ; Geological history ; Geological processes ; Geological surveys ; Geology ; Geophysics ; Global optimization ; Gravity anomalies ; Imaging techniques ; inversion ; Logging ; Machine learning ; Mineral exploration ; Neural networks ; Resource exploration ; sedimentary basin ; Sedimentary basins ; Synthetic data</subject><ispartof>Geophysical Prospecting, 2025-01, Vol.73 (1), p.113-129</ispartof><rights>2024 European Association of Geoscientists & Engineers.</rights><rights>2025 European Association of Geoscientists & Engineers.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2407-99b97c16193bbd04da5550af7be1dd37e83fe557a3fffcfca6b5edacfe1daa5f3</cites><orcidid>0000-0003-4966-1208 ; 0000-0002-4603-7760 ; 0000-0002-0191-8564 ; 0000-0002-4336-1039</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1365-2478.13647$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1365-2478.13647$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Roy, Arka</creatorcontrib><creatorcontrib>Ekinci, Yunus Levent</creatorcontrib><creatorcontrib>Balkaya, Çağlayan</creatorcontrib><creatorcontrib>Ai, Hanbing</creatorcontrib><title>Deep learning‐based inversion with discrete cosine transform discretization for two‐dimensional basement relief imaging of sedimentary basins from observed gravity anomalies</title><title>Geophysical Prospecting</title><description>Sedimentary basins, integral to Earth's geological history and energy resource exploration, undergo complex changes driven by sedimentation, subsidence and geological processes. Gravity anomaly inversion is a crucial technique offering insights into subsurface structures and density variations. Our study addresses the challenge of complex subsurface structure assessment by leveraging deep neural networks to invert observed gravity anomalies. Optimization approaches traditionally incorporate known density distributions obtained from borehole data or geological logging for inverting basement depth in sedimentary basins using observed gravity anomalies. Our study explores the application of deep neural networks in accurate architectural assessment of sedimentary basins and demonstrates their significance in mineral and hydrocarbon exploration. Recent years have witnessed a surge in the use of machine learning in geophysics, with deep learning models playing a pivotal role. Integrating deep neural networks, such as the feedforward neural networks, has revolutionized subsurface density distribution and basement depth estimation. This study introduces a deep neural network specifically tailored for inverting observed gravity anomalies to estimate two‐dimensional basement relief topographies in sedimentary basins. To enhance computational efficiency, a one‐dimensional discrete cosine transform based discretization approach is employed. Synthetic data, generated using non‐Gaussian fractals, compensates for the scarcity of true datasets for training the deep neural network model. The algorithm's robustness is validated through noise introduction with comparisons against an efficient and traditional global optimization‐based approach. Gravity anomalies of real sedimentary basins further validate the algorithm's efficacy, establishing it as a promising methodology for accurate and efficient subsurface imaging in geological exploration.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>basement depth</subject><subject>Basements</subject><subject>Boreholes</subject><subject>Data logging</subject><subject>Deep learning</subject><subject>deep neural network</subject><subject>density contrast</subject><subject>Density distribution</subject><subject>Discrete cosine transform</subject><subject>Discretization</subject><subject>Energy sources</subject><subject>Fractal transforms</subject><subject>Fractals</subject><subject>Geological history</subject><subject>Geological processes</subject><subject>Geological surveys</subject><subject>Geology</subject><subject>Geophysics</subject><subject>Global optimization</subject><subject>Gravity anomalies</subject><subject>Imaging techniques</subject><subject>inversion</subject><subject>Logging</subject><subject>Machine learning</subject><subject>Mineral exploration</subject><subject>Neural networks</subject><subject>Resource exploration</subject><subject>sedimentary basin</subject><subject>Sedimentary basins</subject><subject>Synthetic data</subject><issn>0016-8025</issn><issn>1365-2478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkc1OAyEUhYnRxPqzdkviehTKUNql8aeamGiMrsmdmUvFzEAFbFNXPoKv4iv5JDJW3coGuHznXG4OIQecHfG8jrkYyWJYqvFRPpVqgwz-KptkwBgfFWM2lNtkJ8YnxgSTshyQjzPEOW0RgrNu9vn2XkHEhlq3wBCtd3Rp0yNtbKwDJqS1j9YhTQFcND50vy_2FVJP5xpNS599Gtuh6x2gpb1nviUasLVoqO1glrtRb2hu1oMJwqrHrIvUBN9RX0UMi_yTWYCFTSsKzneQ1XGPbBloI-7_7Lvk4eL8_vSyuL6ZXp2eXBf1sGSqmEyqiar5iE9EVTWsbEBKycCoCnnTCIVjYVBKBcIYU5saRpXEBmqTnwGkEbvkcO07D_75BWPST_4l5HGiFrxUpeCKq0wdr6k6-BgDGj0Pebyw0pzpPhfdp6D7FPR3Llkh14qlbXH1H66nt3dr3Rey_Zjc</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Roy, Arka</creator><creator>Ekinci, Yunus Levent</creator><creator>Balkaya, Çağlayan</creator><creator>Ai, Hanbing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0003-4966-1208</orcidid><orcidid>https://orcid.org/0000-0002-4603-7760</orcidid><orcidid>https://orcid.org/0000-0002-0191-8564</orcidid><orcidid>https://orcid.org/0000-0002-4336-1039</orcidid></search><sort><creationdate>202501</creationdate><title>Deep learning‐based inversion with discrete cosine transform discretization for two‐dimensional basement relief imaging of sedimentary basins from observed gravity anomalies</title><author>Roy, Arka ; Ekinci, Yunus Levent ; Balkaya, Çağlayan ; Ai, Hanbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2407-99b97c16193bbd04da5550af7be1dd37e83fe557a3fffcfca6b5edacfe1daa5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>basement depth</topic><topic>Basements</topic><topic>Boreholes</topic><topic>Data logging</topic><topic>Deep learning</topic><topic>deep neural network</topic><topic>density contrast</topic><topic>Density distribution</topic><topic>Discrete cosine transform</topic><topic>Discretization</topic><topic>Energy sources</topic><topic>Fractal transforms</topic><topic>Fractals</topic><topic>Geological history</topic><topic>Geological processes</topic><topic>Geological surveys</topic><topic>Geology</topic><topic>Geophysics</topic><topic>Global optimization</topic><topic>Gravity anomalies</topic><topic>Imaging techniques</topic><topic>inversion</topic><topic>Logging</topic><topic>Machine learning</topic><topic>Mineral exploration</topic><topic>Neural networks</topic><topic>Resource exploration</topic><topic>sedimentary basin</topic><topic>Sedimentary basins</topic><topic>Synthetic data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roy, Arka</creatorcontrib><creatorcontrib>Ekinci, Yunus Levent</creatorcontrib><creatorcontrib>Balkaya, Çağlayan</creatorcontrib><creatorcontrib>Ai, Hanbing</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Geophysical Prospecting</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roy, Arka</au><au>Ekinci, Yunus Levent</au><au>Balkaya, Çağlayan</au><au>Ai, Hanbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning‐based inversion with discrete cosine transform discretization for two‐dimensional basement relief imaging of sedimentary basins from observed gravity anomalies</atitle><jtitle>Geophysical Prospecting</jtitle><date>2025-01</date><risdate>2025</risdate><volume>73</volume><issue>1</issue><spage>113</spage><epage>129</epage><pages>113-129</pages><issn>0016-8025</issn><eissn>1365-2478</eissn><abstract>Sedimentary basins, integral to Earth's geological history and energy resource exploration, undergo complex changes driven by sedimentation, subsidence and geological processes. Gravity anomaly inversion is a crucial technique offering insights into subsurface structures and density variations. Our study addresses the challenge of complex subsurface structure assessment by leveraging deep neural networks to invert observed gravity anomalies. Optimization approaches traditionally incorporate known density distributions obtained from borehole data or geological logging for inverting basement depth in sedimentary basins using observed gravity anomalies. Our study explores the application of deep neural networks in accurate architectural assessment of sedimentary basins and demonstrates their significance in mineral and hydrocarbon exploration. Recent years have witnessed a surge in the use of machine learning in geophysics, with deep learning models playing a pivotal role. Integrating deep neural networks, such as the feedforward neural networks, has revolutionized subsurface density distribution and basement depth estimation. This study introduces a deep neural network specifically tailored for inverting observed gravity anomalies to estimate two‐dimensional basement relief topographies in sedimentary basins. To enhance computational efficiency, a one‐dimensional discrete cosine transform based discretization approach is employed. Synthetic data, generated using non‐Gaussian fractals, compensates for the scarcity of true datasets for training the deep neural network model. The algorithm's robustness is validated through noise introduction with comparisons against an efficient and traditional global optimization‐based approach. Gravity anomalies of real sedimentary basins further validate the algorithm's efficacy, establishing it as a promising methodology for accurate and efficient subsurface imaging in geological exploration.</abstract><cop>Houten</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/1365-2478.13647</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4966-1208</orcidid><orcidid>https://orcid.org/0000-0002-4603-7760</orcidid><orcidid>https://orcid.org/0000-0002-0191-8564</orcidid><orcidid>https://orcid.org/0000-0002-4336-1039</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-8025 |
ispartof | Geophysical Prospecting, 2025-01, Vol.73 (1), p.113-129 |
issn | 0016-8025 1365-2478 |
language | eng |
recordid | cdi_proquest_journals_3147431717 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Artificial neural networks basement depth Basements Boreholes Data logging Deep learning deep neural network density contrast Density distribution Discrete cosine transform Discretization Energy sources Fractal transforms Fractals Geological history Geological processes Geological surveys Geology Geophysics Global optimization Gravity anomalies Imaging techniques inversion Logging Machine learning Mineral exploration Neural networks Resource exploration sedimentary basin Sedimentary basins Synthetic data |
title | Deep learning‐based inversion with discrete cosine transform discretization for two‐dimensional basement relief imaging of sedimentary basins from observed gravity anomalies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%E2%80%90based%20inversion%20with%20discrete%20cosine%20transform%20discretization%20for%20two%E2%80%90dimensional%20basement%20relief%20imaging%20of%20sedimentary%20basins%20from%20observed%20gravity%20anomalies&rft.jtitle=Geophysical%20Prospecting&rft.au=Roy,%20Arka&rft.date=2025-01&rft.volume=73&rft.issue=1&rft.spage=113&rft.epage=129&rft.pages=113-129&rft.issn=0016-8025&rft.eissn=1365-2478&rft_id=info:doi/10.1111/1365-2478.13647&rft_dat=%3Cproquest_cross%3E3147431717%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3147431717&rft_id=info:pmid/&rfr_iscdi=true |